Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

Reverse Compilation for Digital Signal Processors:
a Working Example

Adrian Johnstone

A.Johnstone@rhbnc.ac.uk

Elizabeth Scott
E.Scott@rhbnc.ac.uk

Tim Womack
T.Womack@rhbnc.ac.uk

Department of Computer Science, Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, UK.

Tel: +44 (0) 1784 443425,

Abstract

We describe the implementation and use of a reverse
compiler from Analog Devices 21xz assembler source
to ANSI-C (with optional use of the language exten-
sions for the TMS320C6x processors) which has been
used to port substantial applications. The main re-
sults of this work are that reverse compilation is feasible
and that some of the features that make small DSP’s
hard to compile for actually assist the process of re-
verse compilation compared to that of a general pur-
pose processor. We present statistics on the occurrence
of non-statically visible features of hand-written assem-
bler code and look at the quality of the code generated
by an optimising ANSI-C compiler from our reverse
compiled source and compare it to code generated from
conventionally authored ANSI-C programs.

Keywords: DSP architectures
VLIW architectures
reverse compilation

1 Introduction

This paper describes the design of a reverse compiler
which accepts assembler code for a 16-bit Digital Signal
Processor (DSP) and outputs ANSI-C with equivalent
semantics. The work was motivated by the observation
that although most embedded systems based on DSPs
have been programmed in assembler, the recent intro-
duction of ‘super’-DSPs such as the TMS320C6x which
present high levels of instruction level parallelism will
force a shift to development in a high level language.
After approaches from industrial users with a large in-
tellectual property investment locked up in assembler
source for the older processors, we applied our existing

Fax: +44 (0) 1784 439786

compiler-compiler tool rdp [9] and well known control-
and data-flow analysis algorithms to construct a high
level language rendering of existing systems for which
assembler source is available.

The paper is in three main sections. In Section 2
we describe the trends in processor architecture which
indicate that assembler development will no longer be
economic for new high-performance DSP systems. In
Section 3 we look at the challenges presented by re-
verse compilation in general. In Section 4 we describe
the overall flow in our reverse compiler asm21toc, the
quality of the results and our current development goals
which include assembler-assembler translation as a way
of measuring the effectiveness of the high level language
compiler’s code generator.

2 The retreat from assembly language

Contemporary applications for general purpose pro-
cessors rarely contain assembly coded routines. The
trend over the last twenty years has been towards per-
forming all development in a high level language to
increase programmer productivity and program porta-
bility. The remaining bastions of machine level pro-
gramming are primarily in embedded systems based
on microcontrollers with tightly constrained memory
and in Digital Signal Processing where the through-
put requirements have continued to justify the costs of
developing tightly optimised hand-crafted assembler.

2.1 Compilers and humans

High level languages can impose a runtime overhead
due to the inefliciencies in translation which arise from
the difficulty of mapping high level language seman-
tics onto machine architectures in a way that exploits

0-7695-0493-0/00 $10.00 (c) 2000 IEEE

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

the special features that assembly language program-
mers delight in. Traditionally, the runtime cost of high
level language development has been justified in terms
of programmer productivity but a more fundamental
reason for programming at high level is that high per-
formance assembly level programming has become a
much more difficult task since the re-introduction of
architectures with visible timing constraints.

Many modern general purpose processors feature
programmer-visible pipelines and superscalar function
units which may contend for register access. Whilst
presenting a sequential programming model (in the
sense that only a single program counter is used) such
architectures blur the boundaries between execution
steps and impose constraints in which particular com-
binations of operations or patterns of data access can
give rise to hazards. It has long been known that
programmers find programming machines with tim-
ing constraints (as opposed to spatial constraints such
as limitations in the interconnections between regis-
ters and functional units) a special problem. Turing’s
Pilot ACE computer allowed the user to optimise in-
struction execution by giving programmer controlled
access to the internal sequencing of instruction micro-
operations, and Turing expected users to expend con-
siderable effort on scheduling operations using a set
of techniques together referred to as ‘optimum pro-
gramming’. Whilst Turing found this hand schedul-
ing natural, other computing pioneers made clear their
frustration with the degree of detail that had to be
orchestrated to achieve a correct program. In 1954
Christopher Strachey noted as his first design goal for
the Ferranti Pegasus computer that optimum program-
ming was to be avoided ‘because it tended to become a
time-wasting intellectual hobby of programmers’ [11].

2.2 Processors with visible timing

Thirty years after Strachey’s pronouncement, low-
cost architectures with programmer-visible timing con-
straints started to appear with the introduction of the
MIPS R2000 in 1985 which was based on the Stan-
ford MIPS processor. The R2000 had non-interlocked
load delay slots although other more subtle dependen-
cies such as between the multiply/divide unit and the
main functional units were hardware interlocked. Even
this rather tentative foray into non-interlocked opera-
tion was ‘corrected’ in 1991 with the introduction of
the MIPS R4000 which added a hardware interlock
on branch delay slots. Most pipelined and superscalar
RISC designs do provide interlocks, not so much for the
comfort of assembly language programmers as to allow
aggressive optimisation by a compiler in the face of

non-statically visible dependencies. In the event of the
compiler incorrectly predicting execution order, hard-
ware interlocks ensure that high level language pro-
gram semantics are preserved.

Extracting maximum performance from these pro-
cessors still requires extensive analysis and careful
scheduling of operations in a manner that would be
recognised by Turing as a contemporary form of op-
timum programming. Turing’s typically direct views
on the merits of scheduling are illustrated by his 1946
comment on the proposed design for the Cambridge
EDSAC computer: ‘The “code” which he [Wilkes, the
designer of EDSAC] suggests is however very contrary
to the line of development here and much more in the
American tradition of solving one’s difficulties by much
equipment rather than by thought’.

Nowadays equipment is cheaper (or at least easier
to obtain) than thought. In particular we are able to
devote considerable amounts of computing effort to the
production of programs and architectures with visible
timing which are hard to program at machine level can
be made usable at a high level given the availability of
an effective optimising and scheduling compiler.

The most extreme manifestation of superscalar pro-
cessing is represented by the class of processors known
as Very Long Instruction Word (VLIW) machines.
VLIW style architectures were developed by Fisher [7]
as a target for his ‘trace scheduling’ algorithm that
allowed multiple heterogeneous functional units to be
scheduled for parallel execution under the control of
a single stream of instructions with almost no hard-
ware interlocking. A classical VLIW comprises a set of
functional units and a set of disjoint memory banks in-
terconnected by a crossbar switch under the control of
an instruction word which contains sufficient sub-fields
to enable all units to operate independently on each
cycle. The trace scheduling technique was developed
from those used to compact horizontally encoded mi-
croarchitectures which VLIWSs resemble. One view of
contemporary superscalar processors is that they are
VLIWs whose long instruction is ‘packetized’ at run
time [12].

Early research led to the launch of three commercial
general purpose architectures from Culler, Multiflow
and Cydrome. All three failed in the marketplace, but
the underlying optimisation algorithms have fed into
the development of compilers for more mainstream su-
perscalar processors. Intel and Hewlett Packard have
developed a new architecture called IA-64 which is
heavily influenced by VLIW ideas and which may dis-
place the Intel x86 processors. Texas Instrument’s
TMS320C6x processor is also marketed as a VLIW,
although it lacks the generality of Fisher’s VLIWs.

0-7695-0493-0/00 $10.00 (c) 2000 IEEE

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

2.3 Digital Signal Processors

DSPs have evolved as a separate class of micropro-
cessor architecture since the introduction of the first
commercially successful DSP, the TMS32010, in 1983.
DSP applications often feature small loops containing
multiply-and-accumulate operations that are executed
on large data sets with very high throughput require-
ments. Applications include window-based image pro-
cessing operations, finite impulse response filters for au-
dio processing, 2-dimensional Fast Fourier Transforms
for frequency domain image processing and various well
known audio and video compression algorithms.

DSPs show a wide variety of features, and some
DSP-like techniques are also used in general purpose
processors so we do not attempt to give a formal dis-
tinction between general purpose processors and DSPs.
However, DSPs usually include the following features.

1. Multiple memory banks which may supply
operands in parallel.

2. Zero overhead looping, in which hardware coun-
ters and comparators maintain the value of loop
induction variables. For the small loops found in
DSP algorithms, removing the overhead of incre-
menting the induction variable, testing its value
and then conditionally branching can more than
double performance.

3. Conditional instruction execution allowing indi-
vidual instructions to be enabled on the basis of
condition flags or a register’s contents.

4. True single-cycle arithmetic. Many general pur-
pose processors trade off the n? computational re-
quirements for n x n-bit multiplication and bar-
rel shift operations against time by offering cycle
multi-cycle functions that run in parallel with the
main functional unit. DSP algorithms are heavily
dependent on the performance of the multiplier
and so a single cycle instruction is required.

5. Hardware index registers and associated address
update logic which allow a (possibly circular)
buffer of values to be stepped through without the
overhead of explicit address update instructions.

6. Hardware stacks which keep subroutine link ad-
dresses on chip.

7. Extended arithmetic modes such as saturated
arithmetic in which the result of an operation
which overflows is set to the maximum value in the
representation rather than just wrapping around
as is normal on general purpose processors.

Apart from these technical tricks, the dominant dis-
tinguishing characteristic of DSPs is that they provide
predictable high performance processing. Most embed-
ded systems are online and have to meet hard realtime
constraints. Typical high-end general purpose proces-
sors display probabilistic behaviour arising from cache
effects and the success rate of speculative execution
within the pipeline which make them unsuitable for
online digital signal processing. DSP vendors provide
true cycle-accurate simulators to allow latencies to be
accurately measured.

2.4 Super-DSPs

Apart from significant increases in clock rate, the
dominant fixed and floating point DSP architectures
have been stable for some years. The small address
spaces and irregular architectures of the 16-bit proces-
sors have made them difficult compiler targets and as
a result most serious application development has been
in assembler. In recent years, however, three new types

of DSP have been launched:

1. The Analog Devices ADSP-2116x ‘Hammerhead
SHARC’ processor integrates two 32-bit float-
ing point datapaths each providing separate
multiplier-accumulator, shifter and arithmetic
functional blocks. The 48-bit instruction word
does not provide enough bits to allow truly in-
dependent scheduling of these blocks. Instead,
2116x operates in a Single Instruction, Multiple
Data (SIMD) mode whereby the two datapaths
operate in lock step on different data elements.

2. The Texas Instruments TMS320C8x device inte-
grates a 32-bit floating point RISC style control
processor and up to four fixed point DSP ‘parallel
processors’.

3. The Texas Instruments TMS320C6x architecture
provides both fixed and floating point variants of a
VLIW-like processor with twin datapaths in which
the eight functional units may be independently
programmed using sub-fields within a 256-bit in-
struction word.

Of these three, the Analog Devices design is the most
conservative being effectively a doubling up of its pre-
vious floating point processor. Assembly language pro-
grammers used to Analog Devices’ previous processors
find it familiar and tractable.

The TMS320C8x was introduced in 1995 but has not
been widely taken up, possibly due to its very complex
programming model which includes Multiple Instruc-
tion, Multiple Data (MIMD) features, multiple caches

0-7695-0493-0/00 $10.00 (c) 2000 IEEE

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

and an unusual instruction set. Further developments
of this device are not expected.

The TMS320C6x provides high potential through-
put. The vendor optimistically refers to the 200MHz
device as 1,600 MIPS processor because in principle
all eight functional units can perform useful work on
each clock cycle. Realistic benchmarks indicate that
at a given clock rate, the TMS320C6x provides about
twice the throughput of the ADSP-2116x [1]!. A fu-
ture processor from Analog Devices, the TigerSHARC
will use VLIW-like techniques to close the performance
gap. These developments mark the convergence of the
main DSP architectures and general purpose processors
(in the form of the IA-64) on VLIW-style machines. It
is very hard to produce an efficient schedule for these
machines by hand.

3 Approaches to reverse compilation

Reverse compilation has been attempted by many
and used productively by few. The usual motivations
for writing a reverse compiler are:

1. the recovery of intellectual property from ‘dusty
decks’: programs written in obsolete languages,

2. the recovery of intellectual property from binaries
for which the source code has been lost, or

3. the acquisition of intellectual property by reverse-
engineering binaries for which the source code is
not owned by the user.

We doubt the usefulness of reverse compilation for ei-
ther of the last two cases. The only reason for analysing
a program in such detail that an equivalent high level
program can be produced is surely to aid software
maintenance. Programs that have been reverse com-
piled from binaries that have had debugging informa-
tion stripped out have to rely on automatically gen-
erated variable names and no comments will survive.
Such programs would be hard to read and maintain.
Our reverse compiler asm21toc falls into the first
class of tools. We have the twin advantages that the
users of our tool are intimately familiar with the details
of the obsolete language and that we have full, com-
mented source code available for the entire system. A
particular feature of asm21toc is that it provides trans-
lations at four levels of analysis, from a naive transla-
tion that is very close to the original assembler source
in style up to a translation with type information and
function parameters that may differ in style from those

1We provide our static analysis of the processor utilisation on
typical TMS320C6x in section 4.2 below.

intended by the original programmer. It is easy to re-
late the naive translation to the original code, and so
assembler programmers who are converting their own
code can follow the later steps of the translation pro-
cess (which may involve significant reorganisation of
their code) without difficulty.

Before considering the technical details and results
of our approach, we look briefly at the spectrum of
approaches to reverse compilation.

A typical high performance compiler performs the
following steps during translation of a high level lan-
guage program into scheduled code for a superscalar
processor (see for instance the description of DEC’s
GEM compiling environment [2]).

1. Parse the source into some intermediate form.

2. Construct function call graphs and basic block
graphs and rearrange basic block graphs into
structures that map naturally onto the target ma-
chine’s control flow instructions.

3. Use dataflow analysis techniques to analyse the
lifetime and usefulness of variables.

4. Apply standard sequential optimisations.

5. Traverse the intermediate form generating archi-
tecture specific code.

6. Apply scheduling algorithms to pack the code
down onto the superscalar architecture in an ef-
ficient manner.

Interestingly, this series of steps (with the exception
of the last which is replaced by a type analysis step)
is exactly the sequence followed by asm2itoc. How-
ever, it would be a mistake to deduce that a reverse
compiler is simply a lightly modified compiler. The es-
sential difference is that reverse compilation requires a
series of partitioning decisions to be made whose aim is
to synthesise a high level structure from the relatively
unstructured assembly code as shown in Figure 1.

4 The asm21itoc reverse compiler

asm21toc is written using our compiler-compiler
tool rdp. The front end parses ADSP-21xx assembler
source and constructs a tree-based intermediate form
which combines a parse-tree like representation of the
program with a combined call graph and basic block
flow graph.

The example C program in Figure 2 scans an array
of integers to find the largest element. A hand writ-
ten version of the program in ADSP-21xx assembler is

0-7695-0493-0/00 $10.00 (c) 2000 IEEE

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

(Library and non-translatable cod@

i

‘ executable ‘

‘ raw C functions ‘ ‘ raw C data

l control flow analysis

‘ structured functions ‘

l data flow analysis

‘ pruned functions ‘ ‘ pruned data

type analysis

‘parameterised functions ‘ ‘ typed data

Figure 1. Analysis stages in a reverse compiler

#include <stdio.h>
#tdefine BUFFER_MAX 3

int elements[BUFFER_MAX] = {1,45, 34};

/* return maximum element */
int max(int left, int right)
{
if (left < right)
return right;
else return left;

}

int largest (int *buffer)
{

int result = 0, temp;

/* scan buffer */

for (temp = 0; temp < BUFFER_MAX; temp++)
result = max(result, buffer[temp]);

return result;

}

Figure 2. Largest element: hand written C

.module example;

.const BUFFER_MAX=3;

.var/dm elements[BUFFER_MAX];
.init elements: 1,45,34;
.entry largest;

max:
ar = ax0 - ayO0;
if 1t jump then;
ar = pass ay0;

rts;
then:
ar = pass ax0;
rts;
largest:
ay0 = 0;

cntr = BUFFER_MAX;

i0 = “elements; { i0 gets address of elements }

10 = 0;
mo = 1;
do check until ce;

ax0 = dm(iO,m0); { ax0 gets data memory loc iO }
{ and i0 is incremented by mO }

call max;

check: ay0 = ar;
ar = pass ay0; { a redundant move }
rts;

.endmod ;

Figure 3. Largest element: hand written assem-
bly

0-7695-0493-0/00 $10.00 (c) 2000 IEEE

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

Figure 4. Output from front end for max ()

shown in Figure 3 and a fragment of the output from
the asm21toc front end is shown in Figure 4.

The ADSP assembly language is rather unconven-
tional, being a mix of C-like arithmetic expressions and
assembler-like labels and directives. Our parser builds
a derivation tree that is then pruned using rdp’s node
promotion operators to yield a reduced derivation tree
(RDT). The parser also creates a symbol table for each
module of assembler source. Modules establish scope
regions within which .global, .external and .entry
directives are used to control external visibility. After
all modules have been parsed, the symbol tables are
walked to reconcile these directives, effectively simu-
lating the behaviour of a linker.

The RDT is then traversed twice and control flow
graph nodes are added. Figure 4 shows the resulting
data structure for the max () function: the node labeled
text is the root of the RDT and the node labeled HEAD
is the root of the control flow graph.

Our control flow graphs fulfill the roles of both a con-
ventional function-level call graph and a conventional
basic block graph. At this stage of the analysis, func-
tion boundaries have not yet been established, and so
separation into call graph and local basic block graphs
is not possible. In fact our control and data flow algo-
rithms are based on this unified data structure, so no
subsequent separation is performed.

Identification of functions follows. Any node that

is the target of a call instruction will appear as the
start of a function in the final translation, but it is

possible for that node to be used in other contexts too.
The semantics of functions in C (and most other high
level languages) are quite limited: functions may only
have one entry point and inter-function jumps are not
allowed. (The setjmp/longjmp mechanism in ANSI-C
does support inter-functional jumps, but jump targets
must already have been visited at least once during
program execution before the jump is taken, so it is
not fully general.) Function-level control flow analysis
is performed at this stage, and sections of code that
are used in more than one context, either as a result
of inter-functional jumps or as a result of multi-entry
functions are cloned.

At this stage, the naive translation can be output.
At this level, all ADSP-21xx registers are declared as
global variables along with any user variables. User
constants are mapped to #define preprocessor com-
mands. User arrays are initialised via an initialiser
function. There is an approximately one-to-one corre-
spondence between instructions in the assembler source
and lines of code in the naive translation. This corre-
spondence is very helpful to users since it easy to see
how asm21toc has performed its translations.

The representation of control structures in the naive
translation is primitive. The existence of do and sim-
ple if instructions in the assembler source enables us
to represent these directly in the ANSI-C output, but
jumps are only shown as goto’s. In addition, even loops
using the built-in zero-overhead looping instructions
are shown as do-while loops in the ANSI-C rather
than as for loops, which would be a more natural
translation.

We apply a control flow analysis stage to ex-
tract structured control structures such as switch,
if-then-else and for from the raw control flow
graph. The result of this phase is a hierarchical graph
which represents the nesting of basic blocks within each
function. We use the structural control flow analysis
algorithm of Sharir [14] with extensions to uncover well
formed single-entry functions. A translation output at
this stage shows much cleaner control structures but
is still based on global variables which explicitly rep-
resent registers in the ADSP-21xx processor, as shown
in Figure 6.

ADSP-21xx code usually contains a large number of
transfers between memory and registers. This is be-
cause each functional unit in the ADSP-21xx proces-
sor is surrounded by input and output pipeline latches
which must be explicitly loaded from data or program
memory before an operation can be performed. Hence
an operation like a = b + ¢ might be written in ADSP-
21xx assembler as shown below.

0-7695-0493-0/00 $10.00 (c) 2000 IEEE

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

/* Level 1 translation from module ’example’ in

Yexamp.dsp’ May 31 1999 11:55:47 */

#include "a2¢c_main.h"

/* Define manifest constants */
#tdefine buffer_max 3

/* Declare variables local to this module */
long int elements[buffer_max];

/* Declare variable initialisation function */

void asm21_data_initialiser_for_example(void)

{

}

elements[0] = 1;
elements[1] = 45;
elements[2] = 34;

/* Function prototypes */
void largest(void) ;
void max(void);

/% Function bodies */
void max(void)

{

}

ar = ax0 - ayO0;

if (an) ar = ax0;
if ('an) ar = ay0;
return;

void largest(void)

{

}

ay0 = 0;

cntr = buffer_max;

i0 = (long int) & elements[0];
10 = 0;

mO0 = 1;

cntr_1 = cntr;
do /* check */
{
ax0 = *((long int*) iO0); DAG_UPDATE(iO, mO);
max();
cntr_1--;
ay0 = ar;
}
while (! (cntr_1 <= 0));
ar = ay0; /* a redundant move */
return;

/* End of translation from module ’example’ */

Figure 5. Largest element: naive translation

void max(void) void max(void)

{ {
ar = ax0 - ay0; if ((ax0 - ay0) < 0)
if (an) return ax0;
ar = ax0; else
else return ayo0;
ar = ay0; }
return;
}

Figure 6. Max function after control and data
flow analysis

ax0 = dm(b); { Load left source with b }
ay0 = dm(c) { Load left source with c }
ar = ax0 + ayO0;

dm(a) = ar; { Store ALU result register }

In the naive translation, all of these operations are
preserved in the ANSI-C output. In a sense, the under-
lying architecture of the processor is showing through
into the translation. A related issue is that of con-
dition codes: within the ADSP-21xx processor a set
of condition code bits is modified during each arith-
metic operation to indicate whether the last was result
was zero, or overflowed and so on in the conventional
manner. These bits may then be sampled by the condi-
tional execution unit in the processor to decide whether
to execute an individual instruction. The vast major-
ity of values written to the condition codes register are
never used, and since there are up to five such writes
for each arithmetic operation, we suppress them from
the naive translation because they obscure the under-
lying behaviour of the program. However, to produce
a semantically correct translation we must retain any
condition code updates that are used by subsequent
conditional instructions.

These redundant condition codes and register ac-
cesses are detected in the dataflow analysis phase. We
use a structural dataflow analysis framework which ex-
ploits the structural control flow graph derived in the
previous step to make analysis more efficient. We then
apply some standard sequential optimisations such as
constant propagation to further compact the code. The
results of this phase are shown in Figure 6.

ANSI-C code produced at this stage has had most
references to ADSP-21xx registers removed, but is still
composed of parameterless functions with all variables
represented as globals. The dataflow analysis can
be used to parameterise functions by finding the live
ranges of variables. Assuming that redundant variable
accesses have already been removed from the global

0-7695-0493-0/00 $10.00 (c) 2000 IEEE

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

graph, then any variables that are read in a function
before they are written must be input parameters and
any variables that are written and read outside of the
function at later points in the control flow must be
output parameters. Other variables used within a func-
tion are local. It is our aim to combine this analysis
with a type analysis that attempts to partition the set
of variables into related subsets of variables that ap-
pear in expressions together. In this way we hope to
capture both parameterisation and references to struc-
tured variables.

4.1 Non-statically visible translations

In a previous paper [10] we have reported on the fre-
quency of non-statically visible translations amongst
a large sample of ADSP-21xx assembler source. The
sample was made up of code from various publicly
available sources and from a large suite of image pro-
cessing algorithms supplied by one of our industrial
partners. The previous results are summarised in Ta-
ble 1 along with new statistics for a large telecommu-
nications application. The sizes of the two samples are
indicated by the total number of instructions in column
one. The ADSP-21xx provides a set of multifunction
instructions which parallelise an arithmetic operation
with one or two memory-register transfers. asm21itoc
sequentialises these instructions, inserting new tempo-
rary variables where there are co-dependencies within
the instruction. Although multifunction instructions
occur rarely (just over 1% of the telecoms application,
4.6% of the main sample) they are important in in-
ner loops and can dominate dynamic instruction fre-
quency counts. More than 10% of the instructions in
our telecoms application use the conditional capability.
The remaining columns in Table 1 refer to classes of
instructions that are difficult for asm21toc to trans-
late because they indicate possible non-statically visi-
ble control paths.

As noted above, writes to program memory may in-
dicate that self~modifying code is in use, or may simply
be write accesses to variables held in program space.
ADSP-21xx programmers rarely use variables (as op-
posed to read-only constants) from program space as
the contention between instruction fetch and variable
write introduces a performance penalty. Even in our
large sample we found only 16 instances, and of those
about half were variable accesses. The remaining ones
relate to a particularly tricky piece of code which saves
machine cycles by directly twiddling an instruction bit
rather than conditionally selecting between two buffer
addresses. Even this situation could in principle be de-
tected by asm21toc since in this case the program ad-

dresses being manipulated were statically visible. How-
ever, we believe that self-modifying code is so rare in
practice that we propose to merely flag each instance
of a write to program space and ask the user to review
the code manually. As may be seen from the table, our
telecoms application does not contain any such refer-
ences.

Indirect calls and indirect jumps refer to procedure
call and jump instructions where the destination is held
in a register. Since the contents of registers are not
in general statically visible, it can become impossible
to perform control and data flow analysis around such
points. In practice, the main use of this facility is to
implement switch statements and function dispatch ta-
bles in which the range of values that may appear in
the register is statically visible. This is the case for the
majority of the small number of indirect control trans-
fers noted in Table 1. Again, we flag these occurrences
and ask the user to review them manually.

The ADSP-21xx processor supports a number of
arithmetic modes which may be changed by modifying
global control bits. Available modes include satura-
tion arithmetic; sticky overflow (in which the overflow
condition code bit stays set until explicitly reset); bit
reverse mode which reflects the address bits from one
of the indexing units (which is useful when implement-
ing the Fast Fourier Transform); and MAC placement
which selects between fractional and integer output for-
mats from the multiplier-accumulator. The translation
of arithmetic operations varies with these modes, and
non-statically visible changes to the bits therefore cause
translation problems. The majority of mode changes
are statically visible, since they tend to occur dur-
ing initialisation. When asm21toc encounters a non-
statically visible mode change it inserts code that sim-
ulates the behaviour of the real processor by creating
a global status bit in the translated ANSI-C program
and selecting between alternatives at run-time. This
is very undesirable because of the large run-time over-
head, so we expect that user will wish to restructure
their assembler code to eliminate such mode changes.
They are thankfully rare.

4.2 Interaction with the TMS320C6x soft-
ware development environment

A critical issue in the design of our translator is how
well the generated ANSI-C code interacts with the na-
tive TMS320C6x development tools. At present we
have performed static analysis of the degree of paral-
lelisation achieved by the C compiler on hand written
code and code generated by asm21toc. The results are
summarised in Table 2 which shows the code produced

0-7695-0493-0/00 $10.00 (c) 2000 IEEE

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

total multifunction conditional program indirect indirect mode
instructions instructions instructions writes calls Jjumps changes
PD&IP 120195 5517 4303 16 79 77 280
Telecoms 2784 33 289 0 1 0 1

Table 1. Characteristics of hand written assembler code

by the compiler alone and and Table 3 which shows the
effect of running the code through Texas Instrument’s
assembler level scheduler.

We used four applications in the test.

asm21toc is the source code for the reverse compiler it-
self. This is perhaps an odd choice since it is most
unlikely that an embedded processor would ever
run a code development tool. However, asm21toc
is interesting because it makes very heavy use of
dynamic memory and very little use of static ar-
rays. In his thesis on the first well-documented
VLIW compiler [6] John Ellis expresses doubts
concerning the effectiveness of VLIW architectures
at dealing with such unstructured programs, al-
though later experiments with the Multiflow pro-
cessor found large degrees of parallelism in the
Unix kernel. Our results bear this out, showing
the parallelisation performance whilst not being
as good as for DSP-like code still leaves only 52%
of the code in purely sequential form.

gm min is a Quine-McCluskey boolean equation func-
tion minimiser. It makes heavy use of arrays, but
also performs a lot of bit-level masking. This pro-
gram shows the greatest proportion of purely se-
quential code after optimisation, but the compiler
did manage some six-way parallelism in an inner
loop.

image processing is a set of 3 x 3 window operators
which perform Sobel edge enhancement, mean fil-
ter noise removal and histogram collection within
a 256 x 256 buffer of integer pixels. Several versions
of the filters were written and the performance of
the compiler was found to be very sensitive to the
details of expression layout in the source code. The
compiler performed extremely well on this code,
leaving only 21% of the instructions in sequential
form and even finding some eight-way parallelism.

telecoms is the telecoms suite introduced in the
last section after translation into ANSI-C by
asm21itoc. It is clear that the compiler performs
relatively well on the kind of code produced by
asm2itoc. We have not been able to perform

a dynamic analysis, but on the strength of this
static analysis and other available benchmarks we
believe that a 200MHz TMS320C6x will run this
translated application around six times faster than
a 75MHz ADSP-21xx running the original hand
written assembler code.

Related work

The most well developed work in this area is the dcc
tool described by Cifuentes in her thesis [4] and a re-
lated paper [5]. dcc translates from Intel 80286 binaries
compiled for MS-DOS back to C. Cifuentes makes some
claims for generality in dcc and we looked at using the
core of the tool for our reverse compiler but found that
the intermediate representation was very Intel specific.
Cifuentes has looked at the issues involved in extending
dcc to handle more RISC oriented instruction sets.

Another Intel specific compiler [8] is restricted to a
particular combination of compiler and memory model
because it specialises in recognising standard C library
functions and suppressing them from the translated
output.

Two projects have taken a more theoretically
well found approach to decompilation. Breuer and
Bowen [3] showed that a decompiler can be constructed
clerically under some circumstances given the availabil-
ity of an attribute grammar describing the compiler.
This is interesting but not practically helpful because
attribute grammars specifying real compilers and their
associated optimisers and schedulers are not available.
A recent paper by Alan Mycroft [13] describes a fasci-
nating application of type inference algorithms to the
reconstruction of C code from register transfer lan-
guage level descriptions of programs.

6 Conclusions and acknowledgements

We have described our approach to reverse compila-
tion and motivated it with a description of trends in the
embedded DSP market. Preliminary results show that
users of our asm21toc tool will be able to realise signif-
icant speed-ups of their code if they migrate to one of

0-7695-0493-0/00 $10.00 (c) 2000 IEEE

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

application | instruction percentage instructions in block size
count 1 2 3 4 5 6 7 8
asm2l1toc 38821 64.46 11.65 3.35 0.51 0.01 0.01 0.00 0.00
qm min 3830 75.46 10.23 0.97 0.26 0.03 0.00 0.00 0.00
image processing 1965 60.36 8.70 2.90 137 1.12 0.41 0.00 0.00
telecoms 4436 70.33 14.83 0.00 0.00 0.00 0.00 0.00 0.00

Table 2. Parallelisation by TMS320C6x ANSI-C compiler: minimal optimisation

application | instruction percentage instructions in block size
count 1 2 3 4 5 6 7 8
asm2l1toc 36318 52.28 13.40 4.68 1.45 0.17 0.04 0.00 0.00
qm min 3329 59.33 14.39 2.61 0.66 0.21 0.06 0.00 0.00
image processing 1629 20.81 9.09 b5.89 4.05 2.58 1.66 0.18 0.37
telecoms 5904 46.21 16.87 4.69 1.13 0.22 0.05 0.00 0.00

Table 3. Parallelisation by TMS320C6x ANSI-C compiler: full optimisation

the new processors by translating to ANSI-C. We have
found that the restrictions of DSPs in terms of depths
of stacks, separation of code and data spaces, explicit
declaration of vectors and the availability of high level
flow control instructions assist the initial stages of our
translation.

We are now investigating type inference techniques
by which we can construct structured data types from
hand written assembler. We are also experimenting
with direct assembler-assembler translation by moving
directly to TMS320C6x code rather than translating
to C first. Preliminary results indicate that the code
produced via the C route is better because the Texas
Instruments C compiler is able to perform some anal-
yses and leave hints for the assembler level optimiser.

We would like to thank the directors of Image Indus-
tries Ltd who provided much of the source code used
to generate the statistics included in section 4.1 and
Georg Sander, the author of VCG, for permission to
include his tool in the distribution package for our rdp
compiler generator.

References

[1] Buyer’s guide to DSP processors. Berkley Design
Technology Inc, 1999.

D. S. Blickstein. The gem optimizing compiler system.
Digital Technical Journal, 4(4):121-136, 1992.

P. T. Breuer and J. P. Bowen. Decompilation: the
enumeration of types and grammars. Transactions
on Programming Languages and Systems, 16(5):1613—
1648, September 1994.

(2]
(3]

0-7695-0493-0/00 $10.00 (c) 2000 IEEE

[4] C. Cifuentes. Reverse compilation techniques. PhD
thesis, Queensland University of Technology, July

1994.
[5] C. Cifuentes and K. J. Gough. Decompilation of bi-
nary programs. Software — Practice and Ezperience,

25(7):811-829, July 1995.

J. R. Ellis. Bulldog: a compiler for VLIW architec-
tures. MIT Press, 1985.

J. Fisher. Very long instruction word architectures and
the ELI-512. In Proc. Tenth Annual Internat. Symbp
on Computer Architecture, pages 140-150, june 1983.
C. Fuan, L. Zongtian, and L. Li. Design and imple-
mentation techniques of the 8086 ¢ decompiling sys-
tem. Mini-micro systems, 14(4):10-18, 1993.

A. Johnstone and E. Scott. rdp — an iterator based
recursive descent parser generator with tree promotion
operators. SIGPLAN notices, 33(9), Sept. 1998.

A. Johnstone, E. Scott, and T. Womack. Reverse com-
pilation of Digital Signal Processor assembler source
to ANSI-C. In Proc Internat. Conference on Software
Maintenance. IEEE, 1999.

S. Lavington. Early British Computers. Digital Press,
Bedford Ma., 1980.

D. J. Lilja and P. L. Bird, editors.
of compilation technology and computer architecture.
Kluwer Academic Publishers, 1994.

A. Mycroft. Type-based decompilation. In S. D. Swier-

[11]

The interaction

[12]

[13]
stra, editor, Proc. 8th European Symposium on pro-
gramming (ESOP’99), Lecture notes in Computer Sci-
ence 1383, pages 208-223, Berlin, 1999. Springer.

M. Sharir. Structural analysis: a new approach to
flow analysis in optimising compilers. Computer Lan-

guages, 5(3/4):141-153, 1980.

10

