L ow Power Architecture Design
and Compilation Techniques
for High-Perfor mance Processor s

Ching-Long Su, Chi-Ying Tsui, Alvin M. Despain
Advanced Computer Architecture Laboratory
ACAL-TR-94-01
February 15, 1994

Keywords: Gray Code, Low Power Design, Memory Addressing, Instruction Scheduling
Abstract

Reducing switching activity would significantly reduce power consumption of a processor chip.
In this paperwe present two novel techniques, Gray code addressing and Cold scheduling, for
reducing switching activity on high performance processors.

We use Gray code which has only one-bitedlént in conseuctive number for addressing. Due to
locality of program execution, Gray code addressing can significantly reduce the number of bit
switches. Experimental results show that for typical programs running on a RISC microprocessor
using Gray code addressing reduce the switching activity at the address lines by 30~50% com-
pared to using normal binary code addressing.

Cold scheduling is a software method which schedules instructions in a way that switching activ-
ity is minimized. V& carried out experiments with cold scheduling on the VLSI-BAM. Prelimi-
nary results show that switching activity in the control path is reduced by 20-30%.

To appear in Proceedings of the [EEE COMPCON, Febuary 1994.

L ow Power Architecture Design and Compilation Techniquesfor
High-Perfor mance Processor s

Ching-Long Su, Chi-Ying Tsui, and Alvin M. Despain

csu@usc.edu, tsui@usc.edu, and despain@usc.edu
Advanced Computer Architecture L aboratory
University of Southern California

Abstract

Reducing switching activity would significantly
reduce power consumption of apessor chip. In this
paper we pesent two novel techniques, Gray code
addressing and Cold scheduling, faducing switching
activity on high performance pcessors.

We use Gray code which has only one-bit défifer
in conseuctive number for adghsing. Due to locality of
program execution, Gray code addsing can significantly
reduce the number of bit switches. Experimemsiiits
show that for typical mgrams running on a RISC mier
processarusing Gray code addssing educe the switch-
ing activity at the addrss lines by 30~50% compdrto
using normal binary code adeksing.

Cold scheduling is a softwamethod which sched-
ules instructions in a way that switching activity is mini-
mized. W carried out experiments with cold scheduling on
the VLSI-BAM. Reliminary results show that switching
activity in the conwl path is educed by 20-30%.

1. Introduction

With recent advances in microelectronic technol-
ogy, smaller devices are now possible allowing more func-
tionality on an integrated circuit (IC). Portable applications
have shifted from conventional low performance products
such as wristwatches and calculators to high throughput

and computation intensive products such as notebook com-

puters and cellular phones. The new portable computing
applications require high speed, yet low power consump-
tion as for such products longer battery life translates to
extended use and better marketabiltjth the conver-
gence of telecommunications, computers, consumer elec-
tronics, and biomedical technologies, the number of low
power applications is expected to gréwmother driving

force behind design for low power is that excessive power
consumption is becoming the limiting factor in integrating
more transistors on a single chip or on a multi-chip module
due to cooling, packaging and reliability problems. In this
work, we will concentrate on how power consumption can
be minimized for high performance microprocessors.

1.1 Related work
Power consumption in CMOS has three compo-

nents: dynamic power consumption, short circuit current
power consumption, and static power consumptioith W
proper circuit design techniques, the latter two compo-
nents can be reduced and are negligible compared to the
dynamic power consumption. Therefore power consump-
tion in CMOS can be described by
Py =f4 CL Vg

where § is the switching activityC, is average capaci-
tance loading of the circuit, and,yis the supply voltage.
To minimize power consumption, we can redyg€f or

Many researchers have been studying low power/
low voltage design techniques. For example, research is
being conducted in low power DRAM and SRAM
design. Also aggressive supply voltage scaling and pro-
cess optimization are used for power consumption reduc-
tion for active logic circuits [Chandra 92],[Liu 93].
However lowering the supply voltage may create other
design problems such as reduced nois@imaincreased
cross talk, etc. Other researchers are exploring instruction
set architectures and novel memory management
schemes for low powgprocessor design using self-
clocking, static and dynamic power management strate-
gies, etc.

Recently research has been done in minimizing the
switching activity of the circuit in order to minimize
power This method is orthogonal to supply voltage
reduction and process optimization and thus can be used
to further reduce power consumption once the supply
voltage and process of the processor are chosen. Cur-
rently most of the work has been carried out in the layout
and logic levels.

In the layout domain, dshnav et al. [®ishnav-
93] propose a low power performance driven placement
procedure which minimizes the length, hence the capaci-
tance loading, of the high switching nets and at the same
time satisfies the delay constraints.

In the logic level, algorithms to synthesize circuits
with minimum switching activities has been developed.
Shen et al [Shen 92] present algorithms for reducing
power consumption during the technology independent
phase of logic synthesis. Prasad et al. [Prasad 93] tackle
the low power kernelization problem in multi-level logic
minimization. During the factorization process, common

sub-expressions which result in a maximum reduction in Unlike traditional instruction scheduling which
switching activities are extracted. Roy et al.[Roy 92] pro- mainly focuses on scheduling instructions for less pipe-
pose a low power state assignment method which uses line hazards, cold scheduling focuses on scheduling
simulated annealing to find the state encoding of a finite instructions for less switching activities while keeping
state machine which the total probability weighted Ham- performance as high as possible. Cold scheduling can be
ming distance of the states are minimizezuiBt. al.[Bui easily implemented by modifying a traditional list sched-
93] minimize the weighted switching activity and hence uler with a cost function to minimize the switching activi-
the power consumption during the technology decomposi- ties invoked by executing consecutive pairs of

tion and mapping phase of logic synthesis. All the above instructions.

methods assume the switching activities at the circuit
inputs are given and minimize the internal switching activ-

ities based on this assumption. 1.3 Organization of the Paper

The rest of the paper isgamized as follows. Sec-
tion 2 discusses the significance of the switching activi-
1.2 Our approach ties at the inputs of a circuit on the overall switching

In this work, we tackle the problem of minimizing activities of the circuit. Section 3 evaluates the use of
circuit switching activities at a higher level, the architec- Gray code as an instruction addressing schemeal¥d
tural level, and we study this in the domain of high perfor- compare the switching activities using Gray code
mance microprocessors. Instead of minimizing the internal addressing to traditional binary code addressing. Section
switching activities of each module of the microprocessor 4 presents the cold scheduling techniques and some
we minimize the switching at the inputs of the modules. experimental results. FinaJlgonclusionary remarks are
Specifically we minimize the switching activities of the provided in Section 5.
address bus and the instruction bus of the microprocessor
using some novel_ hardware _and software techniques. The 2. Switching Activity in Pipelined Processors
reasons for focusing on the instruction and address buses)] o T)
are as follows. Switching activity depends on the sequence Figure 1 shows a typical pipelined circuit of which
of the signal values applied at the inputs of the circuit. For €ach stage consists of a combinational circuit between
the datapath of a microprocessie signal values at the two latches. At the beginning of a clock cycle, the input
inputs depend on the data and hence can only be deter- _S|gnals of the combinational circuit are f|rst Iatched_ln the
mined at run-time. For the instruction and address lines, iNput latch A. They are then evaluated in the combina-
the values are related to the static code which can be deter-tional circuit and propagated to the output which are
mined at complie time. Also for a typical pipelined RISC ~ latched in the output latch B at the next cycle. These sig-
processarthe instruction line has to drive many modules na_Is become the_lnp_ut signals for the (_:orn_b|nat|qn_a_| cir-
such as the instruction cache, instruction regittercon- cuit at the next pipeline stage. The switching activities of
trol path decodeiThe address lines also drive many mod- the combinational circuits depends on the logic and struc-
ules such as Memory Address Regis chains and the ture of the_ circuit and the switching ag:nvmes at the out-
/0 pads. Moreover the instruction and address buses are Put of the input latch. Although there is no general theory
usually long and have higher routing capacitance. There- N the relationship between the switching activities of the
fore they are nets with lge capacitance loading and mini- inputs and t_hat of the_ mternal_ no_des of _a_c_omblnatl_on cir-
mizing the switching activity of these nets has a significant Cuit, we believe that if the switching activities are high at

impact on the power consumption of the microprocessor the in_puts_, then_the_internal switching factivities at the
In this paperwe present two techniques which combinational circuit also tend to be high and vice versa.

reduce switching activity during program execution. The To support this claim, we carried out experiments
first technique, Gray code addressing, is a hardware
method which uses Gray code for instruction addresses. m
The second technique, Cold Scheduling, is a software .
method which schedules instructions during compilation —) >
to reduce switching activities. — e >
The advantage of Gray code over straight binary —] Circuit >

code is that Gray code changes by only one bit as it
sequences from one numbey to the next. In other word_s, if latch A latch B
the memory access pattern is a sequence of consecutive
addresses, then each memory access changes only one bit
at its address bits. Due to instruction locality during pro-
gram execution, most of the time memory accesses are ~ 0n a set of combinational circuit benchmarks obtained
sequential in nature. Therefore a significant number of bit from the ISCAS-89 and MCNC-91 benchmark set, and
switches can be eliminated through using Gray code studied the ééct on the circuit switching activities if the
addressing. switching activities at the input lines are reducece W
used the estimation method in [Ghosh 92] to estimate the

Figure 1 Combinational circuit and latches

switching activities. Switching activities are measured as
the expected numbers of switching per cycle. First the
switching activity of each input is set to 0.5 (Model 1).
Then it is reduced to 0.42 (Model Il) and 0.32 (Model 11I)
respectively Table 1 summarizes the circuit switching
activities under dferent input switching activities.

cycle, the impact can be significant since an instruction
scheduler has more instructions to schedule.

To better understand the impact of instruction
sequence on the switching activities in general purpose
processors, we select a RISC-like procegberVLSI-

BAM [Holmer 90], as an experimental architecture. This
microprocessor is pipelined with data stationally control.
There are five pipeline stages: Instruction Fetch (IF),
Instruction Decode (ID), Instruction Execution (IE),
Memory access (M), and Mé Back (WB). The instruc-
tion set of the VLSI-BAM is similar to the MIPS-2000
[MIPS 86] with some extensions for symbolic computa-
tion. Figure 2 shows the pipeline stages and the control
path of the VLSI-BAM processoFor each pipeline
stage, there is an instruction registePLA, and a latch
for control signals. Instructions are passed through
instruction registers and decoded by the PLAs in the pipe-
line stages. Control signals which are generated from
PLAs, are latched before they are sent to the datapath.

Model | Model I Model Il
circuit | switching| switching % of switching % of
activity activity | reduction| activity | reduction
9symml| 38.11 33.88 1.1 28.31 25.72
alu4 94.91 93.05 1.96 83.80 11.71
apex6 | 214.28 186.27 13.07 158.50 26.03
cordic 25.23 2431 3.65 23.03 8.72
count 37.66 32.16 14.60 27.80 26.18
example] 92.17 85.80 6.91 76.38 17.13
f51 27.24 23.74 12.85 19.76 27.46
pair 384.02 352.57 8.19 311.33 18.93
s208 26.57 27.07 -1.88 26.30 1.02
5298 31.81 27.38 13.93 22.99 27.73
s344 44.84 38.33 14.53 32.06 28.50
s400 47.80 38.60 19.25 31.13 34.87
s444 48.55 39.50 18.64 31.91 34.27
s526 51.75 45.83 11.44 38.52 25.57
s820 51.87 45.29 12.69 38.49 25.80
s838 99.65 94.19 5.48 85.99 13.71
s953 49.23 39.68 19.40 32.40 34.19
x1 78.71 71.62 9.01 62.36 20.77
X3 213.42 191.90 10.08 165.93 22.25
x4 140.47 122.35 12.90 103.70 26.18
avg.% 10.89 22.84
reduction

Table 1Circuit switching activities vsinput switching activities

IF ID EX M WB
PLA PLA PLA PLA PLA

Ivl

Ivl

Ivl

Ivl

Ivl

v

v

v

v

v

From the results, we see that in general reducing the
switching activities at the inputs will reduce the total
switching activities of the combinational circuit. The aver-
age reductions are abouit% and 23% when the input
switching activities are reduced by 16% and 36% respec-
tively.

Switching activities at the staging latches of a pipe-
lined microprocessor arefatted by various factors. For
latches in the datapath, switching activities are mainly
determined by the run-time data sequences. For latches in
the control path, switching activities are strongly depen-
dent on the instruction execution sequences. Since run-
time data is not well known at compile-time, the impact of
cold scheduling on switching activities at the latches in the
data path is not cleardowever instruction execution
sequences are controlled by the instruction scheduler at
compile-time. The impact of cold scheduling on switching
activity at the latches in the control path is more direct. In
this paperwe will focus on the impact of cold scheduling
for reducing switching activities in the control path.

Different instruction sequences can have a signifi-
cantly diferent efect on the switching activities and the
impact depends on the type of architecture. In a CISC pro-
cessorthe impact may not be so obvious since one instruc-
tion may need several processor cycles to execute. In
contrast, for a general pipelined RISC-like procedsor
which most instructions can be executed in one processor

Figure 2 Pipeline structure and control path of VLSI-BAM

A cycle-by-cycle instruction-level simulator is
built for collecting the switching activities at the latches
in the control path during execution of benchmark pro-
grams.Benchmark programs used in this paper are shown
in Table 2. The benchmarks are ranging from less than
1,000 cycles to lger than 10,000,000 cycles. These
benchmark programs are selected from the Aquarius
benchmark suite [Haygood 89]. Applications of these
benchmark programs include list manipulation, data base
query theorem proverand computer language parser
Benchmark programs are first compiled through the
Aquarius Prolog compiler Ah Roy 92] into an interme-
diate code (BAM code), which is gt machine indepen-
dent. The BAM code is then further compiled into
machine code of the @&t machine, the VLSI-BAM.

3. Gray Code Addressing

In traditional von Neumann machines, data is
fetched from memory before executed. For binary code
addressing scheme, data and instructions that are
accessed sequentially are located in the memory with
consecutive binary address. For sequential memory
access, next address is obtained by doing a binary incre-
ment on the current address.

Table 2 Benchmark programs

Benchmark Cycles Description
fastqueens| 1,138,655] Eight queens problem
gsort 4,560 Quicksort of a 50-element list
reducer 1,064,197 A graph reducer for-€ombinator
circuit 4,504,940 VLS| module generator
semigroup 4,487,201 Query a data base
nand 350,761 A circuit generator
boyer 27,494,723 BoyerMoore theorem prover
browse 18,883,712 Build and query a database
chat 3,303,153 English for database querying

3.1 Binary Code Representation

Binary code addressing system uses base 2. A
binary representation 100111 is interpreted as

1Ix2+0x2+0xP+1xF+0xB+1x2+
1x2t+0x2®=170

Table 3 shows 4-bit binary representations and their
corresponding decimal equivalent.

Table 3 Binary code representation and decimal equivalent

Binary Decimal Binary Decimal

code Equivalent code Equivalent
0000 0 1000 8
0001 1 1001 9
0010 2 1010 10
oon 3 101 11
0100 4 1100 12
0101 5 1101 13
0110 6 1110 14
0111 7 1111 15

3.2 Gray Code Representation

A Gray code sequence is a set of numbers, repre-
sented as a combination of digits 1s and 0s, in which con-
tiguous numbers have only one bitfeient. A formal
definition of a Gray code sequence is described as follows
[Hayes 88],
1.G,=0,1.

2. Let G =g, G-+, DKo, K 1. Gyaq is formed by first
preceding all members of the sequenge %0, then
repeating G with the order reversed and all members pre-
ceded by 1. In other words,

Gy+1 = 0ay, Og,..., OK.o, Ogpk 4, 1gpk.4, 1pKoo,...,
191, 1

For example, G2 = 00, 011,110 and G3 = 000,
001, 01, 010, 10, 111, 101, 100. Clearly the foregoing
construction ensures that consecutive members of a Gray
code sequence ¢ in exactly 1 bitTable 4 shows 4-bit
Gray Code representations and their corresponding deci-

mal equivalent.
Table 4 Gray code representation and decimal equivalent

Gray Decimal Gray Decimal

code Equivalent code Equivalent
0000 0 1100 8
0001 1 1101 9
oon 2 1111 10
0010 3 1110 11
0110 4 1010 12
0111 5 101 13
0101 6 1001 14
0100 7 1000 15

3.3 Conversion between Binary and Gray Code

The conversion between binary code and Gray
code is defined as follows. Let B and G be the binary and
the Gray code representations of the same decimal num-
ber respectively represented by:

B= <bn_1, bn_z,..., b1, b0>
G = <On-1, Gn-2-» 91, o>

The conversion of binary code to Gray code is as
follows. Let g and bbe the " bit of G and B respectively
g; is then equal to the exclusive or ¢fibd b, ;. The most
significant bit of G and B are the same. The following for-

Binary code --> Gray code

n = bn)
9i=by1® b (i=n-1,0)

mula summarize the conversion.

For example, let B be a binary number <1,1,0,1>
the decimal equivalent of which is 13. The valuesf b
b,, by, and ly are 1, 1, 0, 1 respectiveljhe Gray code
representation is then equal to;<b;® by, b,® by, b;®
by> which is equivalent to <1,0,1,1>.

Similarly the conversion of Gray code to binary
code also uses the exclusive or operation. Howévier
more complex. bis equal to the exclusive or ofand all
of the bits of G that preceding, @e. g+1, Gi+2s--+» Gh-1-

The most significant bit of the binary representation and
Gray code representation are the same. The following for-
mula summarize the conversion.

Gray code --> Binary code

bn =0n
bi=b B g; (i=n-1,0)

For example, let G be a Gray code number
<1,1,0,1> the decimal equivalent of which is 9. The values
of g3, O, 01, and g are 1, 1, O, 1 respectiveljhe binary
code representation is thengsg3Pg2, g30g2® g1,
93®g2®g1P g0> which is <1,0,0,1>.

3.4 Number of Bit Switchesin Binary Codevs.
Gray Code

The number of bit switches of a sequence of num-
bers can be significantly firent depending on the code
representations. Figure 3 shows an example. For the
sequence of numbers from 0 to 16, shown in Figure 3(a),
there are 31 bit switches when the number are encoded in
binary representation while only 16 bits switch when they
are encoded in Gray code representation. Howéwethe
following sequence <1,3,7,15,14,12,13,9,8,1@2/5,
4,5,0,16>, which is shown in Figure 3(b), there are only 17
bit switches for binary representation compared to 29 bit
switches for Gray code representation.

0 00000 00000 1 00001 00001
1 00001 00001 3 00011 00010
2 00010 00011 7 00111 00100
3 00011 00010 15 01111 01000
4 00100 00110 14 01110 01001
5 00101 00111 12 01100 01010
6 00110 00101 13 01101 01011
7 00111 00100 9 01001 01101
8 01000 01100 8 01000 01100
9 01001 01101 10 01010 01111
10 01010 01111 11 01011 01110
11 01011 01110 2 00010 00011
12 01100 01010 6 00110 00101
13 01101 01011 4 00100 00110
14 01110 01001 5 00101 00111
15 01111 01000 0 00000 00000
16 10000 11000 16 10000 11000
bit bit
changed 31 16 changed 17 29
(@) binary Gray (b) binary Gray
Figure 3 The bit switches of binary codesvs. Gray codes

For random access patterns, Gray code and binary
code have similar number of bit switches. Note that the
number sequence in Figure 3(b) is careful selected in favor
of the binary representation. In general, this special
sequence is rather unlikely to happen. For consecutive
access patterns, which occur often in a general processor
for executing consecutive instructions in basic blocks,
Gray code addressing has fewer bit switches.

3.5How To Use Gray Code Addressing

In a general uni-process@n instruction is fetched
from an address pointed to by the program couAfesr
this instruction is fetched, the program counter is increased
by one for the next fetch. The program counter is also
modified by branch instructions based on branch condi-
tions. In the binary code addressing system, a binary
counter is needed for incrementing the program counter
For branch instruction, the calculatedyetraddresses are
written directly into the program counter if the branch is
taken. In Gray code addressing system, a Gray code
counter is needed for incrementing the program counter
For branch instructions, the calculatedy&raddress is
directly written into the program counter if the branch is
taken. The only dierence between binary code and Gray
code addressing systems is the instruction field fgetar
addresses. In a Gray code addressing system, the instruc-

tion field for the taget address in a branch instruction is
modified such that the calculatedgiraddress is the cor-
rect taget address in Gray code addressing system.

Figure 4 shows an example of branch instructions
in binary code and Gray code addressing systeras. W
represent a binary code as,<h,.4,....lp>, and a Gray
code as <g gn.1,---» &>g, Where the bit length is n+1.
The correct execution sequenceAd(br,C,andD)
whereA, B, C, andD are instructions anlot is a taken
branch. The tget address of the branch is the addition of
current program counter and théset which is specified
in the branch instruction. In binary code addressing sys-
tem, the diset of the branch instruction is <*, and
the value of the current program counter isKOb,.
The taget address of this branch instruction is the binary
addition of <0110>, and <0011>,, which is <101013.
In the Gray code addressing system, we can implement
this branch operation by modifying thest value speci-
fied in the branch instruction to <1Iil>,. Since the cur-
rent program counter is <010Q, the taget address of
this branch instruction is then 11>, which is the
binary addition of <01001pand <10f0>g.

Binary code Gray code
12 <0100>, A 12 <010103 A
13 <0101>, B 13 <0101>y B
14 <0110>; | pr, 00111 14 <010013 | pr, 101107
21 <101013 C 21 <1111>, c
22 <1010>, D 22 <1013 D

=igure 4 Branch instructionsin binary code and Gray code addressi|

3.6 Results

To validate the advantage of Gray code addressing,
we implement a Gray code addressing scheme on the
VLSI-BAM [Holmer 90]. Table 5 summarizes the switch-
ing activity at the address bits of the processSor
instruction accesses, compared to the traditional binary
code addressing scheme, Gray code addressing signifi-
cantly reduces the address bits switching activities. For
data accesses, switching activity resulting from both
schemes are quite close. This is because instruction
accesses are more sequential than data addresses for nor-
mal program execution. Moreoyéne more instruction
locality a program has, the more reduction will be.

We measure the performance of the address coding
scheme by the number of bit switches per executed
instruction, denoted as BPI. Figure 5 shows the BPI of
instruction addresses in binary code and Gray code for
different benchmark programs. The benchmark program
with the most significant reduction of bit switches is
fastqueens. The BPI of instruction addresses in binary

Table 5 Switching Activities at the address bits

Instruction | Instruction | Data Data J
Bench-| Address in | Address in | Addressin | Addressi
mark Binary Cod¢ Gray Code | Binary Cod¢ Gray Cod
Ifastqueergs 2,804,797 | 1,177,861 | 973,151 1,038,509
gsort | 12,057 6,047 6,011 5,701
reducer] 2,731,471 1,817,517 | 1,566,384 | 1,484,893
circuit | 10,477,309 6,638,057 | 6,005,394 | 5,308,314
semigroup 12,028,774 8,933,613 | 6,174,504 | 6,010,871
nand | 848,899 551,512 438,553 406,609
boyer | 76,019,504 57,440,479 48,250,617 47,333,577
browse] 47,335,394 30,897,487 24,885,247 26,393,123
chat | 8,019,831 5,099,81 | 4.370,555 | 3,952,065

code and Gray code are 2.46 and 1.03 respectiviedy
reduction in bit switches is more than half (58.13%). For
the worst performance of Gray code addressing, which is
boyer, the reduction of bit switches is still significant
(24.28%). The average BPI for Gray code addressing is
1.60, while the average of BPI in binary code addressing is
2.53. The average reduction in bit switches is then equal to
36.89%.

O Binary Coded
H Gray Coded

fastqueensh 103

gsort 133

reducer p——T 7T 2.57
cireuit — 27— >3
semigroup —Tw—'z-%

] 2.46
] 2.64

nand —rw—'2'42

boyer —7709—'2'76

browse —_l_m_nzm

chat —sr— 2 BF!
10 15 20 25 34

Figure 5 Bit switches of instruction addresses

Figure 6 shows the BPI of data addresses in binary
code and Gray code among benchmark programs. The BPI
of data addresses in binary code and Gray code are very
close. Among the set of benchmark programs, we find that
two out of nine benchmark prograniasfqueen and
browse) have lower BPI in binary code than in Gray code.
The other seven benchmark programs have slightigtar
BPI in binary code than in Gray code. The average BPI in
Gray code addressing is 1.28 while that in binary code
addressing is 1.39. The average reduction of bit switches is

then 7.91%.

O Binary Code
W Gray Coded

asort —Jl.z's
e —1 40
I 1.33
cireuit —_11.18
semigroup 38
1.25
nand 176
boyer %77%
1.32
browse # 140
132 BP
chat ——‘1.20
-
0.5 1.0 1.5 2.0 2.5

Figure 6 Bit switches of data addresses

4. Cold Scheduling

Traditional instruction scheduling algorithms
mainly focus on reordering instructions to reduce pipeline
stalls, avoid pipeline hazards, or improve resource usage.
More recent instruction scheduling algorithms such as
trace scheduling [Fisher 81], percolation scheduling
[Nicolau 84], and global scheduling [Bernstein 91] sched-
ule instructions across basic blocks in order to increase
instruction-level parallelism. The main goal of these
scheduling algorithms is to improve performanae. T
reduce power consumption, these instruction scheduling
algorithms need to be modified to adjust to the new objec-
tive.

In this section, we present the details of our cold
scheduling algorithm. Basically cold scheduling uses tra-
ditional performance-driven scheduling techniques with
special heuristics for reducing switching activities.

Before we go into the details of cold scheduling, we first
review the traditional list scheduling algorithm.

4.1 Scheduling for Performance

Traditional instruction scheduling approaches con-
sist of three steps: 1) partition a program into regions or
basic blocks. 2) build a control dependency graph (CDG)
and/or data dependency graph (DDG) for each code
region or basic block. 3) schedule instructions in CDG
and/or DDG within resource constraints.

The main goal of the traditional instruction sched-
uler is to schedule the instruction sequence such that it
can be executed in a ¢g@t machine as fast as possible
with minimal pipeline stalls. Therefore the quality of an
instruction scheduler is measured by the amount of pipe-
line stalls introduced by the output instruction sequence
when it is executed on the machine.

Let B = Iy, I5,... be an output instruction sequence
of a basic block. The number of pipeline stall cycles

between execution of instructionaind |, is denoted as
D(lj,lj+1). For example, if there is no pipeline stall cycles
between execution of instructiopdnd b, then D(},I5) =
0. Otherwise, if there are m pipeline stall cycles between
execution of instructioryland b, then D(},1,) = m. The
total pipeline stall cycles in the execution of a basic block
is denoted as PSZD(l;,lj11), j = 0... n-1. The main
objective of an instruction scheduler is therefore to mini-
mize PS. In the case of scheduling a region, the objective
is thus to minimize the pipeline stalls of this region,
instead of in an individual basic block. For example, if a
region consists of basic blocks,B,,...B,, and the num-
ber of pipeline stalls in these basic blocks arg PS
PS,...Pg, then the instruction scheduler tries to minimize
1k(w*PSp+ Wo*PSy+... +W*PSy), where wyis a weight
of estimated dynamic execution frequency of a basic block
B;.
]

Figure 7 shows a data dependency graph and vari-
ous output instruction sequences from a typical instruction
schedulerThe taget machine is assumed to have a one
cycle delay slot for load/store instructions after store
instructions due to bus conflicts. These instruction
sequences running on the VLSI-BAM introducdetiént
pipeline stalls. Instruction sequence lifeud three cycles
of pipeline stalls. Instruction sequences | and Ill have the
best scheduling with only one pipeline stall cycle.

4.2 Scheduling for L ow Power

Switching activities depend on the sequence of
input signals. If the input sequence can be reordered in
such a way that switching activities are minimized, power
consumption can then be minimized. Therefore, the goal
of an instruction scheduler for cold scheduling is to reor-
der the code such that switching activities are minimized
without introducing significant performance degradation.
The quality of cold scheduling is measured by the reduc-
tion in switching activity in the processor when the output
instruction sequence is executed on gagamachine M.

We denote Sfll;;1) as the number of bit switches that
occur in the processor when instructian Is executed

just after] on M. The total switching activity is defined as
BS =% SJIJ-,IM), j=0...n-1. The main goal of cold sched-
uling is to minimize BS. In the case of scheduling a region
which consists of basic block;B,,...By, having switch-
ing activities Bg, BS,,...BS, respectivelythe cost func-
tion of the cold scheduler is therefore 1/
k(w1*BS1+wo*BS,+...+W *BS,), where wis a weight of
estimated dynamic execution frequency of a basic block
Bj.

We illustrate the significance of instruction schedul-
ing on switching activities using the example in Figure 7.
We measure the switching activities for each of the three
instruction sequences. The switching activities are nor-
malized with respect to that of the instruction sequence |I.
The normalized switching activities of instruction
sequences Il and Ill are 1.05 and 1.45 respectively
Although instruction sequences | and Il are good sched-
uled codes in terms of performance (only one pipeline stall

Begin

End

(a) data dependencies graph

OPRP O~NOPA~WNPRE

abel(l(move/4,7)).

mov(e,t0).
umax(b,e,e).
addi(e,4,e).
pushd(tO/cp,e,?2).
Idi(-1,t1).

std(r(2)/r(1),e+ -4).
add28(r(0),t1,r(0)).

mov(r(3),r(2)).
st(r(0),e+ -6).

[Pipdinestalls=1 |

%D(1,2) = 0
%D(2,3) = 0
%D(3,4) = 0
%D(4,6) = 0
%D(6,7) =0
%D(7,8) = 0
%D(8,10) = 0
%D(10,9) = 0
%D(9,5) = 1

(b) Instruction sequence |

label(I(move/4,7)).

6

P 01O ~NP~OWNPR

0

Idi(-1,t1).
mov(e,t0).
umax(b,e,e).
addi(e,4,e).

add28(r(0),t1,1(0)).

pushd(tO/cp,e,2).

std(r(2)/r(1),e+ -4).

st(r(0),e+ -6).
st(r(3),e+ -5).
mov(r(3),r(2)).

Pipeline stalls= 3]

%D(6,1) = 0
%D(1,2) = 0
%D(2,3) = 0
%D(3,8) = 0
%D(8,4) = 0
%D(4,7) = 1
%D(7,9) = 1
%D(9,5) = 1
%D(5,10) = 0
%D(10,1) = 0

(c) Instruction sequence ||

label(I(move/4,7)).

1

A wonN

BB~

0
1

mov(e,t0).
umax(b,e,e).
Idi(-1,t1).
addi(e,4,e).
pushd(tO/cp,e,2).
st(r(3),e+ -5).

add28(r(0),t1,r(0)).
std(r(2)/r(L),e+ -4).

mov(r(3),r(2)).
Id(e-4, r3).

| Pipdinestalls=1 |

%D(1,2) = 0
%D(2,6) = 0
%D(6,3) = 0
%D(3,4) = 0
%D(4,5) = 1
%D(5,8) = 0
%D(8,7) =0
%D(7,10) = 0
%D(10,1) = 0
%D(11,9) = 0

(d) Instruction sequence 111

Figure7 A DAG and its scheduled code

cycle), instruction sequence Il has the worst switching
activity cost (45% more than that of instruction sequence
1). On the other hand, the switching activities of instruc-
tion sequence Il is quite close to that of instruction
sequence | (only 5% more), though instruction sequence I
has the worst performance (three pipeline stall cycles).

The above example indicates that there is no clear
correlation between performance and switching activities.
The design for low power hence does not conflict with the
design for performance. In other words, we may be able to
achieve both goals at the same time.

4.3 Phase Problem of Instruction Scheduling and
Assembly

In order to implement cold scheduling, structure of
a traditional compiler backend needs to be modified. In a
traditional compiler backend, instruction scheduling and
register allocation are processed before assembling code.
Instructions and their registers are represented in a sym-
bolic form. Usually data and control dependency graphs
can be easily derived from instructions in a symbolic form.
However it may not be easy to derive the bit switching
information between instructions from their symbolic
forms due to the following reasons: (1) thgyeraddresses
of branch/jump instructions may not be known before
instructions are scheduled and registers are allocated, (2)
during instruction scheduling and register allocation, the

sizes of basic blocks may be changed, (3) peephole optimi-

zation may change sequence of instructions in a basic
block, and (4) the binary representation of indexes to the
symbol table may not be available.

The above problem is called thlease problem of
instruction scheduling and assembly. Instruction schedul-

ing preceding assembly may degrade the impact of reduc-

ing bit switches between instructions. Howewenen
assembly precedes instruction scheduling, the flexibility of
instruction scheduling is limited. A similar problem is the

basic blocks since tget addresses of branch/jump
instructions are decided before instruction scheduling.
For instruction scheduling like trace scheduling, percola-
tion scheduling, and global scheduling, this scheme is
hard to apply

Compiler
Front-end

A

Register
Allocation

A

Pre-assemble

=

Compiler back-end

v

Instruction
Scheduling

v

Post-assembler

v
Figure 8 Pre-assembler, instruction scheduler, and post-assembler

4.4 Inputs of Cold Scheduling Algorithm

Two inputs are needed for cold scheduling: (1)
data dependency graphs for benchmark programs and (2)
a power cost table for each pair of instruction.

The data dependency graph is constructed based
on the instruction-level dependencies. Given an instruc-
tion stream, a DAG is built by backward pass construc-
tion, in which the instruction stream is scanned
backwards. For each resource R, R.input and R.output
represent sets of instructions which use R as input and

phase problem between instruction scheduling and register output resources respectivelypical resources are gen-

allocation [Bradlee 91], where instruction scheduling pre-
ceding register allocation may increase register pressure
and instruction scheduling following register allocation
may introduce false dependencies.

A simple solution to deal with the phase problem of
instruction scheduling and assembly is to derive or
“guess” binary representations of instructions before
instruction scheduling. @/introduce a novel compiler
structure, shown in Figure 8, which divides an assembler
into two parts, pre-assembler and post-assenitier
major tasks of the pre-assembler are to calculagettar
address of branch/jump instructions, indexes to symbol
table, and transform instructions to binary form. The major
task of the post-assembler is to do the rest of work in an
assemblerOne advantage of partitioning an assembler is
that having binary representations of instructions available
before instruction scheduling allows us to proceed cold
scheduling. This scheme however will limit the ability of
the instruction scheduler to schedule instructions across

eral registers, special registers (the program coumntey
fault bit,...,etc,), and memaryhe details of the DAG
construction algorithm are shown in Figure 9.

Every entry S(I,I;), in the power cost table repre-
sents the switching activities invoked in the processor by
executing the pair of consecutive instructigns ISince
the instruction bus mainly drives modules inside the con-
trol path, we only include the switching activities of the
control path in the power cost enthy Figure 2, we can
see that the pipelined control path contains the instruction
registers, PLAs and control signal output latches. For
every pair of instructionsi(lj), S(k,1;) is then obtained by
summing up all the gates in the instruction registers,
PLAs and control signal output latches that are going to
switch (0->1 or 1->0) when is executed right after. lIf
the capacitance loading of each gate is known, the actual
power cost can be obtained by summing up the capaci-
tance loading of all switching gates.

DAG construction

INPUT: An instruction stream.
OUTPUT: DAG representation.

0. Reverse the instruction sequence from an instruction stream.
1. For any resourci,

setR.input to be{}

setR.output to be{}

2. Visit an instructiorl, identify its input and output resources,
INs andOUTs.
3. For each elementin OUTs,

IF there is any instructiohassociated witl.input,
THEN create an ar,J).
IF there is any instruction K associated witbutput,
THEN create an ar@,K).
setY.output to befl}.
setY.input to be{}.
4. For each elemenX in INs,

IF there is any instructiob associated witbX.output,
THEN create an arg@,L).
add| into X.input.
5. IF there is any instruction yet to be scheduled,

THEN go to step 2.
ELSE return.

Figure 9 DAG construction algorithm

4.5 Cold Scheduling Algorithm

One simple implementation of cold scheduling is
list scheduling with heuristics tgated for low bit switch-
ing. Given a DAG, cold scheduling firselects instruc-
tions which are ready to be executed. An instruction is
defined as ready to be executed if all its operands and
resources are readkll ready instructions are collected in
a ready list. Instructions with the highest priority in the list
will be selected to be executed in the next cycle. The pri-
ority of an instruction in the ready list is measured by the
power cost when this instruction is selected to be executed
in the next cycle. The less the power cost, the higher the
priority of this instruction. The priority of an instruction in
the ready list has to be recalculated for each cycle until the
instruction is selected.

After executing the selected instruction, some
instructions may become ready if they depend on the
selected instruction. These new ready instructions are then
added to the priority list. The instruction that has the high-
est priority in the list will be selected as the next instruc-
tion to be executed. If there are still instructions that
havent been scheduled and the ready list is empgy
simply put a NOP (No OPeration) instruction for the next
execution cycle. If the tget machine has the ability to
detect pipeline hazards, then we just ignore the next exe-
cution cycle. This process is continued until all instruc-
tions are scheduled. Figure 10 shows the algorithm for
cold scheduling.

4.6 Results

We have implemented the cold scheduling algo-
rithm in the Agquarius compiler system. The original
instruction scheduler in the Aquarius compiler system is
used for comparison. For the sake of simpljcitg only

Cold Scheduling
INPUT: DAG representation and bit switching table
OUTPUT: A scheduled instruction stream

0. Setready list RL to be {}
Set the last scheduled instruction LSI = NOP

1. Remove ready instructions from DAG and
add these ready instruction into RL.

2. For each instruction I in RL,
find S(LSI,1).

3. Remove an instruction | with the smallest S(LSI,I? from
The removed instruction becomes the current LSI.
Write out LSI.

4. IF there is any instruction yet to be scheduled,

THEN go to step 1,
ELSE return.

Figure 10 Cold Scheduling Algorithm

include the switching activities at the input and output
latches in the power cost entRigure 1 shows the
reduction in switching activities for diérent benchmark
programs using cold scheduling over that uses the origi-
nal performance-driven instruction scheduilére results
show an 20 ~ 30% reduction in switching activities.
Although the study in this paper is limited to circuits in
the control path, the amount of switching activities saved
by cold scheduling is still significant.

fastqueens
gsort
reducer
circuit
semigroup
nand 2
boyer
browse Reduced
chat it switching(%)
|
10 20 30 40
Figure 11 Bit switching reduction of cold scheduling

Figure 12 shows the impact of performance using
cold scheduling. Compared to a regular performance-
driven instruction scheduling, cold scheduling has a
2~4% performance degradation. This minor performance
degradation is mainly due to trading bit switches for per-
formance.

5. Conclusion

In this work, we demonstrated that significant
reduction in power consumption can be achieved by an
architectural decision and compiler techniques. In partic-
ular, we presented two novel techniques to minimize
switching activities for high-performance processors.

fastqueens
gsort
reducer
circuit
semigroup
nand
boyer

browse

Performance

chat ;
e%datlon (%

[oX

2 4 6 8

Figure 12 Performance degradation dueto cold schedul

First Gray code is used for the memory addressing scheme

instead of the traditional binary coding. Because of the
characteristic of Gray code and the consecutive memory
referencing nature of processors due to program locality
significant reduction in switching activities is obtained at
the address lines. Experimental results show an average
36.9% reduction. In addition, we described a simple
scheme which modifying the current optimizing compiler
backend to work with the Gray code addressing system.

Second, we developed a new instruction scheduling

algorithm, cold scheduling, which minimizes the switching
activity using a simple list scheduling algorithme W
implemented it in the Aquarius compiler system. Experi-
mental results show that by using cold scheduling, about
20~30% of the switching activity in the control path are
reduced with only a 2~4% degradation in performance
comparing with the regular performance-driven instruction
scheduler

In the future, we want to further explore the impact
of architectural decisions and compiler techniques on
power consumption. In particujawe are working on the

instruction set architecture design for a low power proces-

sor and hardware/software co-design for low power

Acknowledgments
The authors would like to thank Chen-Cheng for

the valuable discussion on using Gray codes for addressing

and John Barr and Steve Crago for reviewing early drafts
and valuable comments. The work was supported by
ARPA under grant No. J-FBI-91-194.

References

[Bradlee 91] D.G. Bradlee, S.J. Eggers, and R.R. Henry
“Integrating Register Allocation and Instruction Scheduling for
RISCs,” the 4th International Conference on Architectural Sup-
port for Programming Languages and Operating System, 1991.
[Bernstein 91] D. Bernstein, and M. Rodeh. “Global Instruc-
tion Scheduling for Superscalar Machines,” Proc. of the ACM

SIGPLAN ‘91 Conf. on Programming Language Design and
Implementation, June. 1991.

[Chandra92] A.P. Chandrakasan, S. Sheng and RBféd-
ersen, “Low-power CMOS digital design,” IEEE J. Solid-State
Circuits, \l. 27, No4, 1992.

[Fisher 81] J.A. Fisher“Trace Scheduling: A&chnique
for Global Microcode Compaction,” IEEE&@nsactions on
Computers, ¥l. 30, No. 7, 1981.

[Ghosh 92] A. Ghosh, S. Devadas, K. Keutzand J.
White, “Estimation of Aerage Switching Activity in Combina-
tional and Sequential Circuit,” the 29th DAC, 1992.
[Haygood 89] Haygood, “A Prolog Benchmark Suite for
Aquarius,” Technical Report, Computer Science Department,
University of California, UCB/CSD 89/509, 1989.

[Hayes 88] J.P Hayes, “Computer Architecture And
Organization,” McGraw-Hill Int. Editions, 1988.

[Holmer 90] B. Holmer B. Sano, M. Carlton,.R/an Roy

R. Haygood, WBush, and A. Despain. “Fast Prolog with an
Extended General Purpose Architecture,” the 17th Annual
International Symposium on Computer Architecture, May
1990.

[Hwu 92] W.W. Hwu and FP. Chang, “Eficient Instruc-
tion Sequencing with Inliningdliget Insertion,” IEEE flansac-
tions on Computers,oV. 41, No.12, Dec. 1992.

[Jouppi 89a] N.P. Jouppi, and D.\WWall. “Available
Instruction-Level Parallelism for Superscalar and Superpipe-
lined Machines,” the 3rd International Conference on Architec-
tural Support for Programming Languages and Operating
System, 1989.

[Liu 93] D. Liu, and C. Svensson, fading Speed for
Low Power by Choice of Supply and Threshotdtages,”

IEEE J. of Solid State CircuitspV 28, No. 1, 1993.

[MIPS 86] “MIPS language programmiarguide,” MIPS
Computer Systems, Inc., 1986

[Nicolau 84] A. Nicolau, J.A. Fisher'Measuring the Paral-
lelism Available for \éry Long Instruction \Wrd Architec-
tures,” IEEE Tansactions on ComputerslV33, No. 1, 1984.
[Prasad 93] S. Prasad and K. RpSCircuit activity driven
multilevel logic optimization for low power reliable operation,”
EDAC, February1993.

[Roy 92] K. Roy and S. Parsad, “SYSLOP: Synthesis of
CMOS logic for low power application,” ICCD, Octob&®92.
[Shen 92] A. Shen, A. Ghosh and S. Devadas,”OQreA
age Power Dissipation and Random Pattestability of

CMOS Combinational Logic Networks”, IEEE ICCAD,Nov
1993.

[Su92] C.L. Su, “An instruction Scheduler and Regis-
ter Allocator for Prolog Parallel Microprocessors,” Interna-
tional Computer Symposium, 1992.

[Tsui 93] C.Y. Tsui, M. Pedram, and A.M. Despain,
“Technology Decomposition and Mappingrgeting Low

Power Dissipation, “the 30th DAC, 1993.

[Vaishnav 93] H. Vaishnav and M. Pedram, “Pcube: A Per-
formance driven placement algorithm for low power designs,”
EURO-DAC, Septembgir993.

[Van Roy 92] P Van Roy and A. M. Despain, “High-Perfor-
mance Logic Programming with the Aquarius Prolog Com-
piler,” Computer January 1992.

[Weste 93] Neil H.E.Weste and K. Esharaghian, “Princi-
ples of CMOS VLSI Design, A Systems Perspective,” Addison
Edition 1993.

