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Abstract— The paper presents a novel strategy aimed at
modelling instruction energy consumption of 32-bits micro-
processors. Differently from former approaches, the pro-
posed instruction-level power model is founded on a func-
tional decomposition of the activities accomplished by a
generic microprocessor. The proposed model has signifi-
cant generalization capabilities. It allows estimation of the
power figures of the entire instruction-set starting from the
analysis of a subset, as well as to power characterize new
processors by using the model obtained by considering other
microprocessors. The model is formally presented and jus-
tified and its actual application over five commercial mi-
croprocessors is included.This static characterization is the
basic information for system-level power modelling of hard-
ware/software architectures.
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I. Introduction

The use of cooperating hardware and software compo-
nents is a popular solution for embedded applications to
concurrently meet time-to-market, low cost and flexibil-
ity. The increasing relevance of power requires to predict
with reasonable confidence the power consumption of both
hardware and software. While methodologies for hardware
power estimation are well established [1], those for software
components require further insights. The power estimation
approaches for microprocessors reported in literature, fall
in two main classes, working at the architectural and in-
struction level. The first class exploits the main strategies
identified for the hardware to characterize blocks of the
microprocessor architecture [2] [3] [4]. A power cost is as-
signed to each architectural module composing the system
by considering the average capacitance to be charged when
the module is stimulated. Statistical power models have
also been proposed. These models are simulation-based
and the activity factors are computed over typical input
streams. This solution takes full advantage of assessed
techniques and EDA tools but exhibits some limitations,
due to the lack of details on the internal structure of the
microprocessor cores. Furthermore, this fine- grain anal-
ysis is time-consuming and the correlation among module
activities is hard to take into account and may produce in-
accurate results. To overcome these problems, instruction-
level measurement-based models have been proposed [5] [6]
[7]. The key point lays in measuring the current drawn by
the processor as it executes a long sequence of the same in-
struction and considering the average current absorbed as
representative of such an instruction. This procedure has
to be repeated for all instructions to completely character-
ize the microprocessor model. However, these approaches
are processor-dependent by construction: for this reason,
they do not exhibit any generalization capability over dif-
ferent microprocessor architectures. In fact, to model an

alternative CPU core, a new costly analysis of the entire
instruction set has to be carried out. Furthermore, the con-
fidence of the estimations is also seldom considered under a
formal viewpoint: the statistical significance of the model
of consumption is usually neither considered nor justified.

The approach here proposed belongs to the instruction-
level class, focuses on 32-bit general-purpose microproces-
sors and overcomes the above limitations. In fact, it pro-
poses a general methodology, independent of the specific
processor, allowing to accurately estimate the static energy
of an instruction set, as the basic information necessary to
perform a more detailed system-level power consumption
characterization, that requires dynamic information to be
evaluated. The methodology abstracts from the architec-
tural level and focuses on the functionalities involved in
the instruction execution. The resulting functional model
exhibits generalization capabilities and allows covering a
broad range of 32-bits microprocessors architectures. As
detailed in section II the static energy consumption of each
instruction is obtained as linear combination of indepen-
dent contributions corresponding to a set of disjoint func-
tionalities. The analysis of the statistical properties of the
model confirms two types of generalizations:
Intra-processor: a model built on a suitable subset of in-
structions allows the extrapolation of the static energy
characterization of the whole instruction set;
Inter-processor: a model constructed on a set of even par-
tially characterized microprocessors allows the extension of
the results to cover new architectures. The absolute energy
consumption of the whole instruction set can be obtained
when a single reference instruction is characterized.

The main motivation for such a model, derives from the
need of power-simulating at instruction level the software-
bound section of embedded applications. Unfortunately,
only a few microprocessor manufacturers have a detailed
power characterization of their cores and even fewer are
willing to disclose this information. One of the most at-
tracting advantages offered by this methodology is that it
allows an early virtual prototyping of the system on dif-
ferent target processors. In fact, power estimation of a
software application running on a microprocessor requires
detailed information on both the static power consumption
of the single instructions executed, and by the dynamic
information associated with the code execution with the
actual input data applied. The overall power consump-
tion will be obtained by suitably combining both these
factors, as proposed in different approaches in literature
[8] [5]. Therefore, the basic static characterization of the
instruction set can be valuable within today’s co-design
methodologies to enable a fast and quantitative evaluation
of alternative embedded processors and system architec-
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tures, especially during the early stages of the design pro-
cess. To validate the proposed methodology, as reported in
section III, experiments have been performed on five com-
mercial microprocessors. Section III shows all the different
phases of the analysis applied to actual cases: identifica-
tion of the functionalities, characterization of the instruc-
tion energy model, estimation of the power consumption
of a single microprocessor and its generalization to power
figures of generic microprocessors. Particular attention has
been paid to show that all the assumptions are well founded
under a statistical viewpoint. In section IV some conclu-
sions are drawn to summarize the value of the proposed
approach and to outline some future research efforts.

II. Model identification

The proposed approach aims at gathering the most sig-
nificant computational properties of a set of 32-bit proces-
sors in order to define a simple and accurate static en-
ergy consumption model. It is worth emphasizing that
the proposed model is built on an a priori knowledge of
both the energy characterization of a set of instructions
(of one or more processors) and the relevant functional
characteristics of each instruction involved in the model
identification. The obtained model produces a static es-
timation (data independent) of the energy consumed in
average by each instruction whose functional characteriza-
tion is unknown (generalization effect). In other words,
starting from a significant subset of instructions of a given
processor (e.g. i80486DX2), it is possible to extract a static
estimation, reasonably accurate, of power characteristics of
instructions that not belonging to the generation set (learn-
ing set) of the model. The model accuracy and its gener-
alization capability depend on three factors: the number
of instructions, the typological variety (RISC/CISC, arith-
metic, branch, logical, etc.) of the instructions and, the
model granularity. In particular, it is necessary to consider
that the more the model is specialized the less it is exhibits
generalization properties. As a consequence, the model
generation involves a complex trade-off between accuracy
and generalization. The procedure for model generation,
its statistical properties and its generalization capability
are discussed in the following sections. Section II-A intro-
duces some definitions and outlines the properties that the
model must satisfy; section II-B introduces the mathemati-
cal formalism; section II-C presents the complete model for
the single-processor case and gives its statistical character-
ization; finally, section II-D generalizes the single-processor
model to the multi-processor case.

A. Model definition

The adopted general model is based on a functional de-
composition of the activities carried out by a generic micro-
processor. The problem of the identification of a functional
model for the energy consumption at the instruction level
is investigated considering the relation that exits between
the processor architecture and a set of functionalities.

Definition 1: A functionality is a set of activities aimed
at a specific goal and involves, partially or totally, one

or more units that can be identified in the structure of
a generic microprocessor.

Definition 2: Two functionalities F1 and F2 are space-
disjoint if the activities accomplished by F1 involve differ-
ent structural units than those that F2 requires.

Definition 3: Two functionalities F1 and F2 are time-
disjoint if F1 accomplishes its activities at a different time
than F2 does.

According to definitions 1, 2 and 3, the activities associ-
ated with an instruction can be modelled as the union of
some specific functionalities. In order to estimate the static
power consumption of an instruction, it is necessary that
each functionality is characterized in terms of its average
current absorption per clock cycle and that the function-
alities are disjoint. In other words, the decomposition of
a processor into functionalities has to be a partition. It
is worth noting that the set of functionalities of the model
does not represent a structural partition, but a purely func-
tional partition. In this framework, the current absorbed
by each instruction can be expressed as a sum of the cur-
rents associated with each functionality involved in the in-
struction execution.

More in detail, the problem of the model identification
consists in determining the set, whose cardinality is k, of
independent functionalities involved in the execution of a
generic instruction, the average current absorbed by each
functionality during its activation (ifj) and the relation
between functionalities and each instruction (as,j ≥ 0) such
that the current associated with each instruction can be
approximated with the linear combination of the currents
absorbed by the functionalities. Consequently, the model
of a generic instruction s is:

is =
k∑

j=1

ifj · as,j (1)

where is is the estimated value for the current consumption
associated with instruction s.

Definition 4: A model is compatible if and only if the
current absorbed by each instruction can be expressed as
a linear combination of the currents associated with a set
of disjoint functionalities.

The concept expressed in this definition indicates that
the groups of active functionalities, instruction by instruc-
tion, are either time-disjoint or space-disjoint or both, so
that the total energy can be obtained by summing up the
energy corresponding to each functionality. As an exam-
ple, consider a simple decomposition in two functionalities:
fetch & decode and execute. These two phases are time-
disjoint even if the they are not space-disjoint: some of
the activities necessary for fetch & decode, in fact, are also
performed during the execute phase. For this reason, the
above decomposition is a partition and thus the additive
property on the energy (or, equivalently, on the currents) is
applicable. To verify the compatibility property, the covari-
ance matrix must be computed and the principal compo-
nents analysis should be applied [9] [10]. These data reveal
whether or not the identified functionalities are reasonably
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independent, and, in this case, how much each of them
contributes to the complete model. A compatible model is
feasible if the energy consumed by any instruction is not
less than zero.

Definition 5: Let S be the set of all instructions of a
given processor, SL ⊆ S be the learning-set composed by
the instructions used to tune the model and SG = S − SL
be the generalization-set. A model is feasible if and only if
the estimated current absorbed by each instruction, in the
learning- and generalization-sets, is greater than zero.

This trivial hypothesis has to be verified to make the
proposed model adherent to the physical reality.

Theorem 1: A sufficient condition for a model to be fea-
sible is that the current associated with each functional
unit is greater than or equal to zero.

Proof: Since as,j ≥ 0 and ifj ≥ 0 by hypothesis, the
product ifj ·as,j ≥ 0 and thus the sum if1 ·as,1 + if2 ·as,2 +
. . . + ifk · as,k ≥ 0.

Unfortunately, it is not sufficient that the model is com-
patible and feasible: it also has to provide a realistic eval-
uation of data. To this purpose, the following definitions
are introduced:

Definition 6: Let d(q) be some data depending on a set
of parameters q and let q̂ = f(d(q)) be the estimated value
of the parameters. The function f() is an estimator for a
given system, and q̂ are the estimated values, if and only if
it is unbiased that is E[q̂] = q, where E[q̂] is the expected
value of q̂.

Definition 7: A model is reliable if and only if it is both
compatible and feasible and the estimator used is unbiased.

The adopted model identification procedure is structured
on a sequence of steps.

In the first step, a functional decomposition is identified.
This subdivision is obtained referring to a generic proces-
sor instruction-set architecture and detecting disjoint func-
tionalities whose absorbed currents are independent of -or
weakly correlated to- each other.

The second step consists in identifying the correspon-
dence between each instruction in the learning-set, consid-
ering both the operating code and the addressing modes,
and the set of functionalities involved. For instance, the
instruction MOV CX,10 (Intel 80486DX2) is characterized
by a register writing, while ADD CX,10 implies a compu-
tation and a register writing. This step leads to an over-
constrained system of linear equartions.

The third step consists in computing the estimates of
the current associated with each functionality. Since the
number of available measures is larger than the number of
parameters, the estimator used is the least square method.

Let m be the cardinality of the considered instruction
set S. The energy associated with the instruction s ∈ S is
expressed by the relation:

es =
k∑

j=1

es,j = Vdd · is · nck,s · τ (2)

where es,j is the energy absorbed by the j-th functionality
involved in the instruction s, k is the number of function-

alities considered, Vdd is the supply voltage, nck,s is the
total number of clock cycles of the instruction s and τ is
the clock period. If ifj is the current consumption of the
functionality j, and as,j expresses the contribution of the
functionality j in the execution of instruction s, the above
relation can be rewritten as:

es =
k∑

j=1

es,j = Vdd ·



k∑

j=1

(ifj · as,j) + rs


 · τ (3)

where, as,j is known for each instruction s and rs is a resid-
ual. Comparing relations 2 and 3, for each instruction s,
the following relation has to be verified:

k∑

j=1

(ifj · as,j) + rs = is · nck,s (4)

Taking into account q ≤ m instructions (m being the cardi-
nality of S) whose energy characterization is known, a lin-
ear system of q equations in k unknowns –the functionality
currents– is obtained. In such a system the coefficients as,j

are known since they are derived from the analysis of each
instruction in terms of the functionalities of the model. As
an example, consider the simplest possible decomposition
in a fetch & decode (F&D) functionality and an execute
(Exec) functionality. The equation for each instruction is
thus:

ifF&D · as,F&D + ifExec · as,Exec + rs = is · nck,s (5)

The procedure to determine the value of the parameters
as,F&D and as,Exec is detailed in section III.

B. Mathematical model

In this section the mathematical properties of the statis-
tical model are investigated and a criterion to validate the
correctness and generality of the static model is derived.

Let k be the number of identified functionalities and let
mL > k be the cardinality of the energy-characterized in-
struction set SL. Then, let A be the mL× k matrix whose
entries are the activation coefficients as,j , IF be the k × 1
column vector whose entries are the unknown currents ifj ,
and IN be the mL × 1 column vector whose elements are
the known terms is · nck,s. The linear system:

IN = A× IF (6)

represents the available knowledge on the variables is that
have to be estimated. Let îs be an estimate of is and ÎF be
an estimate of the real parameters IF. The minimization
of the square error ‖IN− ÎN‖2 yelds:

ÎF = (AT ×A)−1 ×AT × IN (7)

To estimate the model parameters ÎF, the columns of ma-
trix A must be linearly independent, otherwise the problem
has infinitely many solutions and the model is not identifi-
able with respect to the measurements available.
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Theorem 2: A model is identifiable with respect to a
set of measurements if it admits a single solution. A neces-
sary and sufficient condition for a model to be identifiable
is that the columns of A = {as,j} are linearly independent.

Proof: If the columns of A are linearly dependent,
the matrix AT × A is singular, i.e. |AT × A| = 0, and
the pseudo-inverse A∗ = (AT × A)−1 × AT cannot be
calculated.

Theorem 2 has the following meaning: two columns are
linearly dependent if the same two functionalities are in-
volved, with the same weight as,j , in the characterization
of all the instructions in the learning-set. When two or
more columns are linearly dependent, there are two possi-
ble ways to solve the problem.

A first solution consists in suitably changing the instruc-
tions in the learning-set. For example, if the model only
consists of Exec and F&D, the instructions in the learning-
set must differ with respect to these two functionalities.
The learning-set should thus be composed of instructions
with one-cycle and multi-cycles fetches and/or instructions
with executions distributed over one or more cycles.

The second solution requires the modification of the
functional decomposition either by increasing or by reduc-
ing the model granularity. Considering the functional de-
composition of the previous example, a possible solution
would be splitting the Exec functionality into more specific
functionalities such as arithmetic, registers etc.

C. Single-processor model characterization and generaliza-
tion properties

Equation 7 gives the set of estimated parameters based
on the known relations between current measurements and
weights as,j . This set of parameters is a reliable model if
its estimator is not biased (definitions 6 and 7). Starting
from the preliminary problem description (where R is the
residual vector of the rs):

IN = A× IF + R (8)

and solving the system in the least square sense:

ÎF = (AT ×A)−1 ×AT × IN (9)

Letting A∗ = (AT × A)−1 × AT , the previous equation,
representing the relation between estimated and actual pa-
rameters, becomes:

ÎF = A∗ × IN =
= A∗ × (A× IF + R) =
= A∗ ×A× IF + A∗ ×R =
= IF + A∗ ×R

(10)

The model is completely characterized, from a statistical
point of view, when the expectation value and the variance
of its parameters are given. Applying the definitions of
expectation value and variance to the specific model, formal
expression for both are derived. The expectation value
E[ÎF] of the model parameters ÎF is, in fact:

E[ÎF] = E[IF + A∗ ×R] =
= E[IF] + A∗ × E[R]

(11)

and the variance V AR[ÎF] is given by the equation:

V AR[ÎF] = E

[(
ÎF− E[ÎF]

)
×

(
ÎF− E[ÎF]

)T
]

=

= E

[(
ÎF− IF

)
×

(
ÎF− IF

)T
]

=

= E
[
(IF + A∗ ×R− IF−A∗ × E[R])2

]
(12)

Expanding the square in the last equation, eventually gives:

V AR[ÎF] = A∗ × (
E

[
R×RT

]
+

+ R× E
[
RT

]
+

+ E[R]×RT +

+ E
[
E[R]× E[RT ]

] )× (A∗)T

(13)

By assuming the residual is a gaussian noise G(0, λ2),
where 0 is the expectation value and λ2 is the variance,
the following relations are satisfied:

{
E[R] = 0
E[R×RT ] = λ2 · I (14)

Note that the gaussian noise hypothesis needs to be veri-
fied. While the first of these relations is straightforward,
the second implies that E[R × RT ] is a diagonal matrix
and thus:

E[ri · rj ] =

{
0 i 6= j

λ2 i = j
(15)

Under these assumptions, the estimator is unbiased, thus:

E[ÎF] = ÎF (16)

and its variance is:

V AR[ÎF] = A∗ × (λ2 · I)× (A∗)T =

= λ2 · (AT ×A)−1
(17)

Unfortunately, λ2 is unknown since it depends on the resid-
ual vector R. For this reason the value of λ2 has to
be substituted by its estimation λ̂2. By indicating with
R̂ = ÎN− IN the vector of the estimated modeling errors,
an estimator λ̂2 of the variance is:

λ̂2 =
‖R̂‖2
m− k

(18)

where, again, m is the number of samples and k is the
number of parameters of the model. The method described
in the preceding paragraphs is applicable if and only if the
distribution of the residuals obtained by using the proposed
linear model is the gaussian G(0, λ2). The mean value of
the residuals µR, depending on a statistical model, is in
turn a statistical variable and has an expectation value and
a variance: {

E[µr] = µr

V AR[µr] = λ4/m
(19)
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To test the null hypothesis µr = 0 with a 95% confidence
level, according to a Z0.95 test, the following inequalities
must be satisfied:

−1.96 · λ2

√
m

≤ µr ≤ +
1.96 · λ2

√
m

(20)

D. Multi-processor model characterization and generaliza-
tion properties

Data collected from measures on five microprocessors
(Intel i80486DX2 [11], SPARClite MB86934 [12], Intel
i960JF, Intel i960HD [7], [13] and ARM7 TDMI [14]) shows
that the same type of instruction has an energy consump-
tion that strongly differs from processor to processor. Nev-
ertheless, it has been observed that the relative current
consumption of instructions of the same type (i.e. same
operation and addressing mode) are of the same order of
magnitude, that is, the ratio between the current absorbed
by a generic instruction and the current absorbed by a ref-
erence instruction is nearly independent of the micropro-
cessor. This suggests that by using the relative currents
instead of absolute ones, a single general model for all pro-
cessors can be extracted.

Let P be the set of available characterized processors,
whose cardinality is p. By using the methodology outlined
in the previous section, the parameters characterizing each
processor can be extracted. These parameters not only
represent the available knowledge on each processor, but
also constitute the basis for the construction of a general
model, that is a model capable of fitting and generalizing
the currents absorbed by the instructions of a processor
not in P. The key idea is, on one hand, the use of relative
currents, on the other hand, the use of a set of processors
for learning. The relative current is defined as:

irel,s =
is

iref
=

∑k
j=1 ifj · as,j

iref
=

k∑

j=1

ifj

iref
· as,j =

=
k∑

j=1

ifrel,j · as,j

(21)

and, according to the equations for absolute currents, the
total current is irel,s · nck,s. For the generic q-th processor
of the set P, characterized by Aq and INrel,q = {irel,s,q ·
nck,s,q}, the following equation holds:

INrel,q = Aq × IFrel,q + Rrel,q (22)

where Rrel,q is the residual vector of the rrel,s,q. Solving
the system in the least square sense yields:

ÎFrel,q = A∗
q × INrel,q (23)

The general model should depend on a single, general, set of
parameters IFrel, rather than the processor-specific IFrel,q,
i.e. it should be expressed by an equation of the form:

INrel,q = Aq × IFrel + Rrel,q (24)

Combining equations (23) and (23) gives:

ÎFrel,q = A∗
q × INrel,q =

= A∗
q × (Aq × IFrel + Rrel,q) =

= IFrel + A∗
q ×Rrel,q

(25)

Adding up these relations for all indices q corresponding to
the p available processors, leads to the following relation:

p∑
q=1

ÎFrel,q =
p∑

q=1

IFrel +
p∑

q=1

A∗
q ×Rrel,q =

= p · IFrel +
p∑

q=1

A∗
q ×Rrel,q

(26)

that, dividing by p, becomes:

1
p
·

p∑
q=1

ÎFrel,q = IFrel +
1
p
·

p∑
q=1

A∗
q ×Rrel,q (27)

Equation (27) indicates that, apart from an error whose
statistical properties will be detailed in the following, an es-
timate of the parameters characterizing the general model
can be the mean value of the estimated parameters of each
processor in the set P. To prove that the mean estimator
is adequate, it is necessary to verify that it is unbiased. To
do this, the expectation value and the variance of the pa-
rameters have to be calculated. The expectation values of
the two sides of the previous equation are:

E

2
41

p
·

pX

q=1

cIFrel,q

3
5 = E[IFrel] + E

2
41

p
·

pX

q=1

A∗
q ×Rrel,q

3
5 =

= IFrel +
1

p
·

pX

q=1

A∗
q × E[Rrel,q ]

(28)

Under the gaussian noise hypothesis for each processor, the
expectation values E[Rrel,q] are known to be zero, thus:

E

[
1
p
·

p∑
q=1

ÎFrel,q

]
= IFrel (29)

An estimate of IFrel is thus:

ÎFrel =
1
p
·

p∑
q=1

ÎFrel,q (30)

This general model is completely characterized from a sta-
tistical point of view only if the expectation value and the
variance of its parameters ÎFrel are known. The expecta-
tion value is:

E[ÎFrel] = E

[
1
p
·

p∑
q=1

ÎFrel,q

]
= IFrel (31)

and the variance, obtained applying the same method used
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for the single-processor case, is:

V AR[cIFrel] = E

��cIFrel − E[cIFrel]
�
×
�cIFrel − E[cIFrel]

�T
�

=

= E

2
64
0
@1

p
·

pX

q=1

A∗
q ×Rrelq

1
A×

0
@1

p
·

pX

q=1

A∗
q ×Rrelq

1
A

T
3
75 =

=
1

p2
· E
2
4

pX

q=1

pX

r=1

A∗
q ×Rrel,q ×RT

rel,r × (A∗r)T

3
5 =

=
1

p2
·

pX

q=1

pX

r=1

A∗
q × E

h
Rrel,q ×RT

rel,r

i
× (A∗

r)T

(32)

According to the previous hypothesis, the residuals Rrel,q

and Rrel,r are gaussian noises and thus:

E[Rrel,q ×RT
rel,r] =

{
0 q 6= r

λ2
rel,q · I q = r

(33)

The expression for the variance simplifies to:

V AR
hcIFrel

i
=

1

p2
·

pX

q=1

A∗
q × E

h
Rrel,q ×RT

rel,q

i
× (A∗q)T =

=
1

p2
·

pX

q=1

λ2
rel,q ·A∗

q × (A∗
q)T =

=
1

p2
·

pX

q=1

λ2
rel,q ·

�
AT

q ×Aq

�−1
=

=
1

p2
·

pX

q=1

V AR
hcIFrel,q

i

(34)

The meaning of this last equation is that by increasing
the number p of considered processors, the variance of the
parameters of the general model decreases.

III. Experimental results

This section collects the experimental results obtained
using the proposed on a set of five commercial micropro-
cessors. The first paragraph is an analysis of the charac-
teristics of assembly languages aimed at the extraction of
the functionalities needed for the proposed model. In the
remaining paragraphs, the identified model is applied on a
single processor first, and then on a set of processors and
its accuracy and generalization capabilities are shown.

A. Identification of functionalities

The goal of this first analysis is to extract the functional-
ities into which the execution of a generic instruction on a
generic microprocessor can be decomposed. A first simple
decomposition leads to two disjoint functionalities: fetch &
decode and execute. It is intuitive that the fetch & decode
functionality, denoted in the following as F&D, can be con-
sidered atomic in the sense that the tasks it performs need
not to be differentiated. The execute functionality, on the
other hand, performs a number of tasks that greatly differs
from instruction to instruction and thus a more detailed
analysis is necessary. Table I shows the classes of opera-
tions provided by the majority of assembly languages [15].

TABLE I

Operation classes of assembly languages

Class Operation

add, subtract
and, or, not, exor

Arithmetic & logic multiply, divide
compare
shift
registers

Data transfer memory
stack
unconditional jumps

Control conditional jumps
calls and returns
exception handling

System interrupts
system calls
add, subtract, compare

Floating-point multiply
divide

Decimal BCD arithmetic
conversion
transfer

String compare
search

An accurate analysis, supported by the measured power
consumption figures reported in the following sections, has
led to the following conclusions:
• a single functionality, denoted in the following simply as
A&L, performs arithmetic, logic, comparison, etc. integer
operations;
• data transfer operations may or may not access memory
and this, intuitively, affects the power consumption. A
functionality to read and write memory is necessary. This
unit will be denoted as Ld&St (Load/Store) and includes
stack operation as well. The data transfers that operate
on registers are accounted for including in the model the
functionality WrReg (Write Register). It is worth noting
that reading a register does not significantly alter the power
consumption with respect to a write operation;
• conditional or unconditional jumps and procedure calls
require some peculiar operation to be performed, such as
destination address calculation, and thus their execution
need to be modeled with the Br (Branch) functionality.
This functionality is also involved in interrupt handling and
system call instructions;
• floating-point instructions are usually performed by a
specific arithmetic unit. At a functional level of abstrac-
tion, this unit is not distinguishable from an integer ALU.
For this reason, a specific functionality for floating-point
arithmetic is not included in the model. The A&L func-
tionality is used to model these operations;
• string operations are usually performed repeating data
transfer and/or compare operations with an implicit regis-
ter used as a counter. These operations can thus be mod-
eled by means of the previously defined functionalities.

Functionally, a microprocessor can thus be decomposed
in fivefunctionalities. These are listed in Table II, while
the relations between classes of operations and the involved
functionalities are summarized in Table III.
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TABLE II

A possible functional decomposition

Functionality Activities

F&D Fetch and Decode
A&L Arithmetic and Logic
WrReg Write Register
Ld&St Load and Store
Br Branch

TABLE III

Operations and related functionalities

Class Functionalities

Arithmetic & logic F&D, A&L
Data transfer F&D
Control F&D, Br
System F&D, Br
Floating-point F&D, A&L
Decimal F&D, Br
String F&D, A&L, WrReg

The functionalities stimulated by an instruction not only
depend on the operation but also on the addressing mode.
Table IV shows the relation between the most common ad-
dressing modes and the functionalities involved. Note that
the calculation of an address is not functionally associated
with the A&L functionality but with Ld&St or Br.

TABLE IV

Addressing modes and related functionalities

Addressing mode Sample Functionalities

Register R2 [WrReg]
Immediate #3 -
Relative 10(R2) Ld&St
PC Relative #100 -
Indirect (R2) Ld&St
Indexed (R2+R3) Ld&St
Memory (100) Ld&St
Indirect Memory @(R2) Ld&St
Auto-increment (R2)+ Ld&St, A&L, WrReg
Indexed and offset 10(R2)[R3] Ld&St

The completion of an instruction requires both execut-
ing an operation and accessing zero or more operands. Ac-
cording to the decomposition into op-code and addressing
mode, the characterization of each instruction is obtained
computing the union of the set of functionalities relative
to the operation and the sets of functionalities relative to
the addressing mode of each operand.

For instance, consider the instruction ADD R3,+(R2).
The ADD operation stimulates the A&L functionality, the
destination operand R3 uses the WrReg functionality and
the source operand +(R2) uses the Ld&St, A&L and
WrReg functionalities. The functionalities stimulated by
the complete instruction are thus:

{A&L} ∪ {WrReg}∪
∪ {Ld&St,A&L,WrReg} =
= {Ld&St, A&L,WrReg}

(35)

According to the previous analysis, the extracted function-

alities represent a possible partition of the tasks performed
by a generic microprocessor. It is worth noting that the
number of functionalities should represent a trade-off be-
tween the available knowledge on the architectures being
modeled and the accuracy obtainable. As a limiting situa-
tion consider a model with a single functionality: the only
architectural knowledge required is the number of cycles
taken to fetch, decode and execute each instruction. With
such a trivial model, both the accuracy obtained in fitting
and the generalization capabilities are reduced with respect
to a more complex model. Figure 1 represents a comparison
between a 1-functionality and a 5-functionalities models in
terms of average errors.

Fig. 1. Comparison of models based on 1 and 5 functionalities

The proposed 5-functionalities partition, though arbi-
trary, is compliant to definitions 1 and 4 and is an ac-
ceptable basis for the mathematical model. However, its
correctness from a statistical point of view ought to be ver-
ified calculating the covariance matrix and then carrying
out the same analysis steps of the principal components
analysis [9]. This technique aims at showing that the pa-
rameters are independent from each other and that all give
a significant contribution to the model. For each processor,
500 randomly selected learning-sets of 8 characterized in-
structions have been used to calculate different estimates of
the parameters. The outcome is a matrix with 5 columns
(the parameters) and 500 rows (the samples). The first
step consists in calculating the normalized correlation ma-
trix (a 5×5 matrix) in which the main diagonal elements
are all ones. Off-diagonal elements of the covariance ma-
trix, being much smaller than 1.0, indicate that the selected
parameters are nearly independent as the model and the
principal components analysis require. The principal com-
ponents are the eigenvectors of the correlation matrix and
their relative contribution to the overall model is expressed
by the corresponding eigenvalues. The mean values, over
all the available processors, of the normalized eigenvalues,
represent the relative contribution of each parameter (i.e.
functionality) and are reported in table V.

TABLE V

Normalized contribution of functionalities to the model

Functionality F&D Br WrReg A&L Ld&St
Contribution 0.078 0.078 0.133 0.198 0.511

According to these results, no functionalities can be
neglected without affecting the accuracy of the resulting
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model. Nevertheless, as table V points out, the contribu-
tion of F&D and Br is less important compared to the
remaining units. A more detailed analysis, summarized
in table VI, qualitatively indicates the significance of each
functionality for all processors. It is worth noting that a

TABLE VI

Relative importance of the functionalities. The symbols ↓, —

and ↑ indicate a low, medium and high impact, respectively.

Processor F&D Br WrReg A&L Ld&St

SPARClite ↓ — — ↑ ↑
Intel i486DX — — ↓ ↑ ↑
ARM7TDMI ↓ ↓ — ↑ ↑
Intel i960JF — — ↓ ↑ ↑
Intel i960HD ↓ — — — ↑

specific functionalities, due to its low impact on the overall
model, might be neglected for some processors, but none
of the functionalities can be ignored when the whole set of
processors is considered.

In the next paragraphs the mathematical model will be
built according to the proposed functional decomposition,
which has proven correct.

B. Instruction characterization methodology

Once a functional model has been identified, the instruc-
tion set must be characterized by assigning a value to the
coefficients as,j corresponding to the five functionalities
previously determined. To clarify the procedure adopted
for instruction characterization, consider a decomposition
in F&D and Exec. In this case the equation for each in-
struction has the form:

as,F&D · ifF&D + as,Exec · ifExec = is · nck,s (36)

The task of characterizing an assembly language on the
basis of this decomposition, consists in assigning the two
coefficients as,F&D and as,Exec for each instruction s. Intu-
itively, since the power consumption depends on the num-
ber of cycles taken to fetch, decode and execute the in-
struction, a reasonable choice is:

{
as,F&D = nck,s,F&D

as,Exec = nck,s,Exec

(37)

that is as,F&D is the number of clock cycles nck,s,F&D

needed for fetch and decode, and as,Exec is the number
of clock cycles nck,s,Exec needed for the execution phase of
instruction s. In a more complex model, constituted by a
F&D functionality and k − 1 disjoint execution function-
alities (A&L, WrReg, etc.) the sum of the k − 1 coeffi-
cients associated with the execution functionalities should
equal the number of clock cycles needed for the execution.
By indicating with if1 the F&D functionality and with
if2, . . . , ifk the k − 1 execution functionalities, the follow-
ing relations must be satisfied:

{
as,1 = nck,s,F&D∑k

j=2 as,j = nck,s,Exec

(38)

Based on the analysis presented in the previous paragraph,
it is possible to determine whether or not a functionality is
involved in the execution of a given instruction. As a con-
sequence, the involvement of a functionality is represented
by means of an activation coefficient bs,j ∈ {0, 1}, where
bs,j = 1 indicates that the j-th functionality is involved
in instruction s. The activation coefficients bs,j and the
coefficients as,j are related by the equation:

as,j =

{
bs,j · nck,s,F&D j = 1
bs,j · ws j = 1 . . . k

(39)

where the weight ws is given by:

ws =

{
0

∑k
j=2 bs,j = 0

nck,s,Exec

/ ∑k
j=2 bs,j otherwise

(40)

In the following paragraphs, this methodology is applied to
a set of microprocessors to verify its suitability in terms of
adaptability and generalization properties.

C. Estimation on a single processor

The first step to verify the suitability of the model is to
ensure that it adequately fits power consumption data on
a single processor and that the gaussian noise hypothesis
is satisfied. The processor used here to show the validity
of the approach is the Intel i80486DX [11]. Tables VII and
VIII show the average currents drawn per clock cycle for a
subset of instructions, reported in [11], along with the num-
ber of clock cycles, the total current (which is proportional
to the total energy) and the characterization in terms of
the five functionalities identified.

TABLE VII

Average currents and clock cycles of Intel i80486DX

Instruction is nck,F&D nck,Exec is · nck

ADD DX,BX 313.6 1 1 313.6
CMP [BX],DX 388.0 1 2 776.0
JMP label 373.0 1 3 1119.0
JZ label 355.9 1 1 355.9
MOV [BX],DX 521.7 1 1 521.7
NOP 275.7 1 1 275.7
SAL BX,CL 306.5 1 3 919.5

TABLE VIII

Instruction characterization of Intel i80486DX (bs,j)

Instruction F&D Br WrReg A&L Ld&St

ADD DX,BX 1 0 1 1 0
CMP [BX],DX 1 0 0 1 1
JMP label 1 1 0 0 0
JZ label 1 1 0 0 0
MOV [BX],DX 1 0 0 0 1
NOP 1 0 0 0 0
SAL BX,CL 1 0 1 1 0

The characterization, in terms of the coefficients as,j , is
obtained by using equations (39) and (40). Let A = {as,j}
be the instruction characterization matrix for the consid-
ered processor and IN = {is · nck,s} the column vector of
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the total currents. The solution IF is obtained by solving
the linear problem in the least square sense. The results,
relative to 18 energy characterized [11] instructions of the
sample microprocessor, are shown in figure 2.

Fig. 2. Intel i80486DX power estimates

The value of the functionalities currents and estimated
standard deviations are reported in table IX.

TABLE IX

Functional unit currents and estimated standard deviation

Functionality Current (mA) STD

F&D 421.41 48.43
Br 355.06 26.98
WrReg 228.48 46.46
A&L 228.33 38.27
Ld&St 505.99 39.90

To verify the correctness of the gaussian noise hypoth-
esis, residuals have been analyzed. The errors, measured
as the difference between actual and estimated currents,
give an estimate of the input residual R. The Z0.95 test is
satisfied and thus the gaussian noise assumption holds (the
mean estimated error µR = 9.94× 10−11 falls in the range
Z0.95 = ±40.75). The accordance between actual and es-
timated data is also satisfactory for all other processors
analyzed, as shown in Tables X and XI.

TABLE X

Functionality currents and standard deviations

Processor if1 if2 if3 if4 if5

ARM7TDMI if 5.7 14.3 13.0 18.3 13.9
σ2 1.1 0.7 0.5 0.6 0.7

i960JF if 362.0 261.9 302.2 320.0 380.6
σ2 8.5 13.1 8.0 8.1 8.9

i960HD if 970.4 692.8 804.8 775.4 1026.3
σ2 17.9 28.4 18.5 18.6 46.5

SPARClite if 218.2 0.0 194.7 175.9 190.6
σ2 9.0 0.0 19.2 18.7 21.4

TABLE XI

Z0.95 test for gaussian noise

Microprocessor m µR STD Z0.95

ARM7TDMI 32 1.00× 10−10 2.99 ±1.05
Intel i960JF 92 1.00× 10−10 56.79 ±11.87
Intel i960HD 92 1.00× 10−10 119.75 ±25.28
SPARClite MB86934 28 1.02× 10−10 30.44 ±12.21

D. Generalization on a single processor

In the previous section, it has been shown that the
model adequately fits actual data on a range of micro-

processors. It is now essential to prove that the proposed
model exhibits generalization capabilities. To verify this,
the following procedure has been repeatedly applied: i)
from the set of available instructions, select a learning-
set, whose cardinality is mL such that the least square
problem is non-singular and well-conditioned; ii) solve the
problem; iii) estimate the currents for the instructions in
the generalization-set ; iv) measure the learning and gen-
eralization errors. It is important, to ensure the accu-
racy of the results, that the learning-set yields to a well-
conditioned system. Let AL be the sub-matrix of A rela-
tive to the learning-set and AG the sub-matrix relative to
the generalization-set. A problem is well-conditioned if:

rcond(AT
L ×AL) ≥ 0.01 (41)

where rcond(·) denotes the reciprocal of the condition num-
ber in the 1-norm [16] and 0.01 is a reasonable, arbitrary,
threshold. The procedure has been repeated with the
learning-set cardinality varying from a minimum of 6 sam-
ples to a maximum of 16 samples, that is the maximum
number of samples available for all processors. For each
learning-set size, 100 different, randomly selected, learning-
sets have been used for the Intel i80486DX leading to the
results shown in the graphs of Figure 3. Similar results
have been obtained for the other microprocessors.

Fig. 3. Generalization error and standard deviation for i80486DX

Despite the random choice of the 100 subsets used in
the analysis, the accordance between the actual currents
and estimated currents is good. This procedure has been
repeated for 500 times for each processor leading to the
results summarized in figure 4.

Fig. 4. Learning and generalization relative error

Note that, since the errors tend to compensate, their
mean value is very close to zero (≈ 10−10): for this rea-
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son the absolute value of the errors has been used to assess
the accuracy of the methodology. The graph reports the
average, computed over all processors and over all 500 dif-
ferent estimates, of the mean error on the learning-set and
generalization-set, plotted against the size of the learning-
set. Figure 4 shows that the mean of the absolute value of
the errors computed on the generalization-set is less than
9%, confirming the generalization capability of the model.
In other words, the model is capable of extrapolating, with
a good confidence, the power consumption of an instruction
not included in the used learning-set.

E. General processor model

The aim of this section is to show that the model is capa-
ble of fitting and generalizing power data, coming from dif-
ferent microprocessors, without any change to the rationale
behind the functional characterization of each instruction.

The absolute current absorbed by an instruction strongly
varies from a microprocessor to another. In general, an ar-
bitrary current per clock cycle (e.g. the average or the
maximum current of an arbitrary number of instructions,
not necessarily the same for each processor) might be used
as reference. In this approach, the current per clock cycle
of a single, specific instruction is used as reference value
since this choice exhibits two major advantages. On one
hand, the accuracy of the estimates produced by using an
arbitrary subset of instructions to compute the reference
value is not better than that obtained by using a single
and specific instruction. On the other hand, the actual
power consumption of only one instruction, rather than a
subset, has to be experimentally measured whenever the
absolute—rather than relative—power characterization of
a generic processor is required. The advantage of using the
current per clock cycle of a single reference instruction is
thus twofold. Table XII shows the ratios for three instruc-
tions on three microprocessors. The reference instruction
selected is the ADD Reg, Reg.

TABLE XII

Currents relative to the ADD Reg,Reg reference instruction

Instruction SPARClite i80486DX i960JF

MOVE Reg,Reg 0.985 0.964 0.941
LOAD (Reg) Reg 1.070 1.366 0.990
SHIFT Reg,Imm 0.977 0.959 0.993

A general processor-independent model is derived in the
following using the relative currents. When a single proces-
sor at a time is considered, the behavior of such a model is
the same obtained with absolute currents. In fact, in this
case the actual data is simply divided by a constant factor:
the reference instruction current. The aim of this section
is to collect the results showing that a model derived us-
ing a set of processors is capable of modelling the power
consumption of the instructions of other processors.

Let P be the set of available processors whose cardinality
is p = 5 and PL ⊆ P be the processors-learning-set. Let
PL,h be a generic processors-learning-set with cardinality
ph and ÎFrel,q be the estimated model parameters com-

puted using all available instructions of the q-th processor.
The general model parameters computed on the basis of
the processors-learning-set PL,h are given by:

ÎFrel,h =
1
ph
·

ph∑
q=1

ÎFrel,q (42)

The parameters ÎFrel,h have been extracted for all 25 − 1
possible processors-learning-sets and have been used to es-
timate the current consumption on all processors in the
processors-generalization-sets P − PL,h. Figure 5 reports
the trend of the mean error, conservatively computed as
the absolute value of the difference between the actual data
and the estimates, for all processor-learning-sets with car-
dinality ph from 1 to 5.

Fig. 5. General model mean error

Each point in the graph represents the mean of aver-
age errors calculated over all the processors in the corre-
sponding processor-generalization-set. The first point of
the series ph = 1 corresponds to the learning set PL,1 =
{ MB86934 }, the second point corresponds to PL,2 =
{ i80486DX }, etc. The first point in the second se-
ries, ph = 2, corresponds to the set PL,6 = { MB86934,
i80486DX } and so on. The plot confirms that the model
is adequately precise and general and that the variance of
the mean error decreases as the number of processors in
the processor-learning-set increases. According to Section
II, the variance of the parameters of the general model is:

V AR
[
ÎFrel

]
=

1
p2
·

p∑
q=1

V AR
[
ÎFrel,q

]
(43)

which is confirmed by the actual data depicted in figure 6.

Fig. 6. General parameters mean variance
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As an example, consider a general model built using the
parameters of the SPARClite MB86934 and ARM7TDMI
architectures to estimate the power consumption of the In-
tel i80486DX. The accordance between actual data and es-
timated data, shown in figure 7, is satisfactory, with errors
falling in the range between ±20%.

Fig. 7. Generalization of Intel i80486DX power consumption

IV. Conclusions

An approach to model the static instructions energy
consumption of 32-bit microprocessors has been proposed.
Differently from the strategies in literature, such as
architectural-level and measurement-based instruction-
level approaches, the proposed functionality-based instruc-
tion-level method estimates the current for each instruction
by means of a linear combination of values associated with
a set of five disjoint functionalities. As confirmed by the
experiments performed, the proposed modeling approach
shows notable accuracy and good generalization proper-
ties, both intra-processor and inter-processor, and allows
extrapolating the power consumption (absolute or relative)
of uncharacterized instructions.

The following table shows the estimated current values
and standard deviations for the five functionalities of the
model extracted by using the reference instruction ADD
reg, reg and the five not completely characterized pro-
cessors ARM7TDMI [14], Intel i960JF, Intel i960HD [7],
[13], SPARClite MB86934[12] and Intel i80486DX.

TABLE XIII

Relative functionality currents and standard deviations

Functionality F&D Br WrReg A&L Ld&St
Current 0.51 0.40 0.47 0.52 0.61
STD 0.007 0.004 0.006 0.006 0.007

By construction, the adopted approach allows the defini-
tion of the static aspects of the power consumption of each
instruction. In this context, the inter-instruction effects
are deliberately neglected. Two main considerations have
driven this choice. First of all, the effects corresponding to
the measure errors and the modeling inaccuracy mask the
contribution related to the state of the processor. Second,

other effects, such as those connected with the pipe and the
memory hierarchy, and in particular the cache, are related
to the dynamic components of the relation between instruc-
tions (in general, more than two) and they have to be con-
sidered by suitably characterizing the computation and the
target architecture. Thus, the proposed model, given such
assumptions, can be considered as the basic component
of a more general power estimation framework, which in-
cludes the dynamic aspects related to the code execution,
the input data and the architectural characteristics of the
embedded system, i.e. memory hierarchy, pipeline effects
and I/O sub-system.
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