
Modeling Assembly Instruction Timing
in Superscalar Architectures

G. Beltrame§, C. Brandolese‡, W. Fornaciari‡, F. Salice‡, D. Sciuto‡, V. Trianni‡
‡ Politecnico di Milano, Piazza L. da Vinci, 32 – 20133 Milano, Italy
§ CEFRIEL Research Centre, Via R. Fucini, 2 – 20133 Milano, Italy

betrami@cefriel.it, {brandole,fornacia,salice,sciuto,trianni}@elet.polimi.it

ABSTRACT
This paper proposes an original model of the execution time
of assembly instructions in superscalar architectures. The
approach is based on a rigorous mathematical model and
provides a methodology and a toolset to perform data anal-
ysis and model tuning. The methodology also provides a
framework for building new trace simulators for generic ar-
chitectures. The results obtained show a good accuracy
paired with a satisfactory computational efficiency.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance and Reliability—Perfor-
mance Analysis and Design Aids; C.4 [Computer Sys-
tems Organization]: Performance of Systems—Modeling
Techniques; I.6.5 [Computing Methodologies]: Simula-
tion and Modeling—Model Development

General Terms
Languages, Performance

Keywords
Assembly-level analysis, Performance estimation, superscalar
architectures

1. INTRODUCTION
The relevance of the software portion of an embedded sys-

tem is steadily increasing and its impact is so large that
many design flows are being studied in order to include a
specific development section dedicated to software. While,
within such flows, hardware synthesis and estimation and
software compilation techniques have been studied for many
years and are well established, few methodologies, and even
fewer tools, are available for an early analysis of the per-
formance of software programs. The problem of execution
time estimation has been tackled, in literature, according to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

two orthogonal approaches. On one hand, accurate meth-
ods and tools have been developed performing a dynamic
analysis strongly relying on proprietary instruction set sim-
ulators [5, 11, 10]. These approaches show good accuracy
and satisfactory efficiency but severely lack generality and
portability over different target platforms. On the other
hand, static approaches [12, 9, 4] are often based on path
analysis and typically provide worst-case estimates, which
may significantly differ from typical execution times. More-
over, most of the techniques found in literature provide an
estimate of the instruction execution count rather than the
expected number of clock cycles. When considering super-
scalar architecture, the instruction count, or even the sum
of the nominal execution times of all instructions, strongly
differs from the actual timing due to parallelism that such
architectures can exploit. This paper specifically addresses
the problem of execution time estimation of the instructions
on superscalar architectures. The proposed approach founds
on a previous work [2] and extends it to explicitly account
for parallel execution of instructions. This implies consid-
ering effects such as pipeline interlocks and memory-related
effects. To tune the model for a specific architecture a be-
havioral simulation engine and a related SDK have been
developed. The simulator has been specifically designed to
model the widest possible range of architectures accounting
for instruction-level parallelism features—such as instruc-
tion shelving, alignment schemas, out-of-order execution,
branch prediction and register renaming—and memory hi-
erarchies [14]. The results obtained after tuning are a static
characterization of the considered instruction set from a tim-
ing point of view and can be used to estimate the actual
execution time of a program without resorting to propri-
etary ISS. The paper is organized as follows. Section 2 in-
troduces the foundations of the model and justifies the need
for the behavioral simulation described in Section 3. Sec-
tion 4 collects the results obtained both with the simulation
framework (paragraph 4.1) and the estimation flow (para-
graph 4.2). Finally, in Section 5 some conclusions are drawn
and the ongoing and future work are briefly outlined.

2. MATHEMATICAL MODEL
When dealing with simple pipelined architectures the nom-

inal execution time of a program can be easily calculated
by summing the CPIs of all the instructions actually exe-
cuted. In fact, the basic assumption made in [3, 2] concerns
the a priori knowledge of instruction CPIs. Nevertheless,
the actual execution time must also consider the effects of
pipeline stalls that, in most cases, produce a severe devi-

ation from the ideal behavior. A more realistic estimate,
i.e. the interlock-aware execution time, can be obtained by
including a statistical term accounting for the stall over-
heads associated to every single instruction. Stall overheads
are calculated by suitably averaging the contribution de-
riving from the dynamic interaction between instructions.
In [3, 2] such overheads are evaluated by considering the
possible interactions of all the instructions falling within a
sliding window of fixed size. The window length is chosen
to be equal to the maximum latency of an instruction in
the pipeline since farther instructions do no influence each
other. In superscalar architectures, the parallel execution
of assembly instructions strongly influences both the actual
CPI of an instruction and the number and type of possible
interlocks. For example, when the three instructions s1, s2
and s3 are executed in an ideal pipeline the resulting CPI is
1.0 for all of them. In a superscalar architecture with three
ideal pipelines in parallel, the resulting CPI would be 1/3.
However, real processors significantly differ from ideal ar-
chitectures and only a portion of the theoretical parallelism
can be exploited. To account for such deviation, a paral-
lelism coefficient has been introduced and defined according
to a statistical analysis of the execution of real-world pro-
grams on a given architecture. Indicating with n(s) and
oh(s) the number of clock cycles for nominal execution and
the number of stall cycles of instruction s and with p(s) the
parallelism coefficient, the estimated CPI is expressed as:

CPIest(s) = p(s) · [n(s) + oh(s)] (1)

It is worth noting that the energy model defined in [2] can
also be applied considering this new definition of CPIest.
The average power w(s), however, increases, as shown by
the relation:

w(s) =
e(s)

CPIest(s) · τ (2)

where τ is the clock period. The following paragraphs de-
scribe how the parallelism coefficient p(s) is defined and how
it can be derived from a statistical analysis of program exe-
cution traces.

2.1 Instruction Set Taxonomy
In order to maintain the approach as general as possi-

ble, no specific architecture or set of architectures has been
considered. Each architecture is, in fact, characterized by
strongly different execution capabilities, leading to signifi-
cant differences in the actual parallelism. A possible solu-
tion to this issue is to define a set of general classes to which
instructions of a specific architecture are assigned. The clas-
sification must account for the dynamic interaction between
instructions with respect to both interlock effects and par-
allel execution.

Definition 1. Given an instruction set I, the equiva-
lence relation R ⊆ I × I:

si R sj ⇐⇒ si and sj have similar dynamic behavior;

defines a taxonomy C ∈ 2I on the instruction set I as the
partition induced by R on the instruction set I. The cardi-
nality |C| of the taxonomy depends on the relation R. The
taxonomy C is thus formed by the classes ci with i ∈ [1; |C|].
Definition 1 gives a way to obtain the taxonomy based on
the equivalence relation R. Nevertheless, R is still to be

properly defined for each instruction set and architecture.
Three approaches have been envisioned:

Hazard The relation R is defined a priori and is based
on the knowledge of the instruction set, the possible
hazards and the architectural details

Full The relation R is always false. In this case each in-
struction represents a class of its own, i.e. no classifi-
cation is performed.

Numeric The relation R is defined a posteriori based on
the data extracted from simulation of the dynamic be-
havior of instructions.

Section 4 shows and discusses the results obtained using the
first two classification paradigms.

2.2 Model Definition
The model expressed by equation (1) depends on two pa-

rameters: the interlock overhead oh(s) and the parallelism
coefficient p(s). The present work extends a previous model,
described in [2], in order to encompass superscalar architec-
tures as well. The original model defined an execution trace
Γ as a list of instructions resulting from the actual execution
of a program. Let a trace Γ be:

Γ = {γ1, γ2, . . . , γN}, γk ∈ I, N > 0 (3)

where N indicates the execution trace size. Instructions
γk are then classified by means of the relation R and the
membership function is accordingly defined as:

〈k, i〉 =

{
1 if γk ∈ ci

0 otherwise
(4)

The overhead oh(γk), introduced by dynamic execution ef-
fects, is associated to the instruction that has been stalled in
order to resolve a hazard situation. Based on the classifica-
tion imposed by R, such overheads have to be collected and
associated to instruction classes. This leads to the definition
of a stochastic variable Di whose density is:

fDi(x) =

∑N
k=1 δoh(γk)=x〈k, i〉∑N

k=1〈k, i〉
(5)

where N is suitably large1 and δ is the Kronecker symbol.
A good estimation of the overhead oh(s) can, for example,
be the expectation value of Di:

oh(s) = E[Di] =
∞∑

x=0

x · fDi(x) with s ∈ ci, x ∈ N (6)

2.3 Parallel Execution Model
The parallelism coefficient can be estimated experimen-

tally starting from the execution trace Γ and observing the
instructions that are executed in parallel. Similarly to the
computation of overheads, the parallelism coefficients are
referred to instruction classes. According to this approach,
the more instructions s ∈ ci belonging to a given class are
executed in parallel, the lower the corresponding parallelism
coefficient p(s) and CPIest(s) are. To determine p(s) it is
necessary to know when an instruction γk starts and ends
executing. The notion of time is here intended as the num-
ber of clock cycles since the beginning of the execution. This
is clarified by the following definition.
1Experiments suggest that N should be greater than 107.

Definition 2. Let tin(γk) the starting time of a generic
instruction γk ∈ Γ and tout(γk) its ending time. The time
range membership function of instruction γk with respect
to class ci ∈ C at time t is defined as:

�t, k, i� =

{ 〈k, i〉 if tin(γk) ≤ t ≤ tout(γk)
0 otherwise

(7)

where the values tin(γk) and tout(γk) are properties of the
instruction γk with respect to a given execution trace Γ.

It is worth noting that the time range between tin(γk) and
tout(γk) not only depends on the instruction latency but also
includes the inter-instruction overhead resulting from stalls.
When an instruction is stalled, in fact, it still occupies some
resources. The time range membership function allows to
know, at each clock cycle, which instructions are being ex-
ecuted. Starting from the time range membership function
it is possible to aggregate values for each class.

Definition 3. The class load function represents the
number of instructions belonging to class ci being executed
at time t. It is defined as:

�t, i� =
N∑

k=1

�t, k, i� (8)

The class load function can be used to compute the instan-
taneous parallelism coefficient, defined as follows.

Definition 4. The instantaneous parallelism coeffi-
cient is defined as:

pt =

{
1/

∑|C|
i=1�t, i� if

∑|C|
i=1�t, i� �= 0

0 otherwise
(9)

where the summation extends to all classes in the taxonomy.

Figure 1 clarifies these concepts with an example in which
three functional units U1, U2 and U3 execute eight instruc-
tions γ1, . . . , γ8 belonging to the classes c1, c2 and c3. The
figure is composed of two parts: the upper portion shows
the scheduling of instructions on each unit while the lower
portion reports the values of �t, i� and pt for the considered
scheduling.

U1

γ4 ∈ c2 γ6 ∈ c3 γ3 ∈ c1

U2

γ8 ∈ c1 γ7 ∈ c3

U3

γ1 ∈ c1 γ5 ∈ c2 γ2 ∈ c3

t 1 2 3 4 5 6 7 8 9

�t, 1�
�t, 2�
�t, 3�

pt

1

1

0

1/2

2

1

0

1/3

2

0

1

1/3

1

0

1

1/2

1

1

1

1/3

2

0

0

1/2

2

0

0

1/2

2

0

1

1/3

1

0

1

1/2

Figure 1: Example of parallelism computation

Consider, for instance, the clock cycle with t = 3 and with
instructions γ6, γ8 and γ1 being executed. The class load
function �3, 1� is equal to 2 since γ8, γ1 ∈ c1. Similarly, �3, 3�
is equal to 1 since γ6 ∈ c3 and �3, 2� is 0 since no instruc-
tions of class c2 are being executed. According to equation
(9), the instantaneous parallelism coefficient p3 is equal to
1/(2+0+1) = 1/3. It can be proved that pt ∈ [1/M ; 1]∪{0}

with M being the maximum number of instruction that the
specific architecture is capable of handling in the same clock
cycle. As an example consider a simple DLX-like 5-stage
pipeline architecture [8]: in this case M = 5 since, when
the pipeline is full, all its stages are executing an instruc-
tion at every clock cycle. In more complex architectures,
where more pipelines are present and possibly share some
of the stages, the computation of M becomes more sophisti-
cated since the observation of the status of the single units
of all pipelines is necessary. The instantaneous parallelism
coefficient pt must then be aggregated according to the se-
lected taxonomy in order to obtain a per-class vision of the
amount of parallelism that the architecture under analysis
can actually exploit. The following definition formalizes this
concept.

Definition 5. The class parallelism coefficient is a
scale factor influencing the execution time of an instruction
belonging to class ci when executed in parallel with other in-
structions. It is modeled by the stochastic variable Pi, which
is characterized by the density function:

fPi(x) =

∑∞
t=0 δpt=x�t, i�∑∞

t=0�t, i�
(10)

where the summations actually extend only over all clock
cycles needed for the execution of the trace Γ.

Referring again to the execution trace of figure 1, consider
the density function fP3(x). Since pt ∈ {1/3, 1/2} and thus
δpt=x = 1 only when x = 1/3 or x = 1/2, then fP3(x) is to
be computed only for such values. In particular for x = 1/3:

fP3(1/3) =

∑9
t=1 δpt=1/3�t, 3�∑9

t=1�t, 3�
=

0 + 1 + 1 + 1

0 + 0 + 1 + 1 + 1 + 0 + 0 + 1 + 1
=

3

5

(11)

The same procedure leads to the result fP3(1/2) = 2/5. The
parallelism coefficient p(s), similarly to the instruction over-
head, can conveniently approximated with the expectation
value of the stochastic variable Pi, that is:

p(s) = E[Pi] =

∫ 1

0

x · fPi(x)dx with s ∈ ci, x ∈ Q (12)

It must be noted that x ∈ Q since it is computed as the ratio
of two integer numbers and that 0 ≤ x ≤ 1 by definition,
thus the integral is computed according to the Lebesgue’s
definition of measure. Concluding the example, p(s) for in-
structions in class c3 is:

p(s) =
1

2
· fP3(1/2) +

1

3
· fP3(1/3) =

2

5
(13)

3. BEHAVIORAL ANALYSIS
To calculate both overheads and parallelism coefficients a

cycle-accurate simulation of the timing behavior of a given
architecture is necessary. In particular, for each instruction
γk actually executed, three quantities must be determined:

• the starting time tin(γk),

• the ending time tout(γk),

• the nominal execution time n(γk).

The execution time overhead oh(γk) can be easily expressed
in terms of these times, as the following equation shows:

oh(γk) = tout(γk) − tin(γk) − n(γk) (14)

While the nominal execution time n(γk) can be found in
the processor data-sheets, the times tin(γk) and tout(γk) can
be determined by executing a behavioral simulation, i.e. a
simulation that only accounts for the timing properties of
the instructions while neglecting the functional and data-
dependent behavior [13]. This is possible thanks to execu-
tion traces which account for these aspects by design. These
considerations, and the goal of being as independent as pos-
sible from a specific architecture, have led to the develop-
ment of a proprietary behavioral analysis tool-set organized
according to the flow shown in figure 2.

Execution Trace

atomic

Microcompiled Trace tribes Annotated Trace

tune

Model Parameters

Figure 2: Behavioral analysis flow

The single steps of this flow and the intermediate results
obtained are detailed in the following paragraphs.

3.1 Microcompilation
The execution trace is first fed to the atomic microcom-

piler that translates the architecture specific assembly into
an expanded, loosely encoded micro-instruction set format
called microcode. This step has the goal of decomposing
the complex functionality of a generic instruction into a se-
quence of basic activities involving only few basic operations.
Table 1 exemplifies the microcompilation process.

Table 1: Microcode examples
SPARCv8 Assembly Microcode

umul %r0, %r1, %r2 read 0 regfile-int
read 1 regfile-int
require 16 alu-int
write 2 regfile-int

ld [%r0,%r1], %r2 read 0 regfile-int
read 1 regfile-int
load 1 address
write 2 regfile-int

fadd %f0,%f1, %f2 read 0 regfile-fp
read 1 regfile-fp
require 5 alu-fp
write 2 regfile-fp

Consider, as an example, the first instruction: the two
reads are used to perform read requests to the integer reg-
ister file regfile-int, specifically for registers %r0 and %r1.
The microinstruction require indicates that the execution
of the multiplication is performed by the integer ALU alu-int

and requires 16 clock cycles2. Finally the write microin-
struction indicates that register %r2 is written. It is impor-
tant noting that whenever a register needs to be written it
must be locked, for example in the decode stage, to prevent

2This is the nominal execution time n(γk).

subsequent instructions from using its content before the up-
to-date value is actually present. The lock is then removed
in a later stage. Other microinstructions work in a similar
manner. As a further remark, it is interesting to analyze the
meaning of the load microinstruction: it is used to require
a memory access and does not explicitly specify the number
of clock cycles necessary to complete the operation. This
intentional generality allows to model different memory hi-
erarchies and thus permits to include in the interlock model
all memory related effects.

3.2 Behavioral simulation
The microcompiled trace is then fed to the behavioral sim-

ulator tribes. The simulator is composed of two main por-
tions: a general purpose simulation engine and a set of cus-
tom, user-defined functional units and resources implement-
ing the behavior of a specific architecture. According to this
scheme, an architecture is composed of a set of functional
units connected by instruction buffers and resources. The
functional units communicate with the resources by means
of messages. Figure 3 describes this architecture.

UNIT
FUNCTIONAL

BUFFER
INSTRUCTION

FUNCTIONAL
UNIT

RESOURCE

RESOURCE

Instruction

Instruction

Instruction

Instruction

Message

Message

Message

Clock

Figure 3: Behavioral simulator structure

Functional units and instruction buffers are always syn-
chronized by the clock signal, while resources may or may
not have an explicit notion of time. According to this scheme,
instruction traverse the different functional units which ba-
sically behave as dispatchers (determining the path) and
schedulers (determining the timing). The simulation engine
provides:

• Base classes from which specific functional units and
resources can be built exploiting inheritance.

• Primitives for instantiating and connecting functional-
ities and resources by means of buffers and messages.

• The notion of a global discrete time managed by the
simulation kernel.

Such framework is flexible enough to model a very large set
of architectures and, at the same time, sufficiently standard
to provide a wide range of capabilities that each specific sim-
ulator can exploit without modification. A similar propri-
etary simulator (Asim) has been developed at Compaq [7].
However, neither sufficient details nor an implementation for
a commercial architecture are currently available to allow a
comparison with the framework presented in this paper.

3.3 Data analysis
The output of the behavioral simulator is an annotated

trace, that is a list of annotated instructions. Each line of
the output has the structure:

< instruction id > < oh > < tin > < tout >

and provides all data necessary for model tuning, which is
performed by the stand-alone tool tune. This tool elabo-
rates the input data and constructs, for each class i, the
density functions fPi and fDi of the parallelism coefficients
and timing overheads respectively. The results obtained in
the tuning phase are then classified according to different
equivalence relations (see Definition 1).

4. EXPERIMENTAL RESULTS
This section describes the experimental environment that

has been set up to validate the simulator and to perform
model tuning and verification of the estimation flow. Two
different set of benchmarks have been used: one for the
tuning of the model and the other for validating the results.

4.1 Simulator validation
The methodology and the simulation framework have been

customized to model the microSPARC-II Embedded Pro-
cessor architecture. Figure 4 shows the internal structure of
the behavioral simulator in terms of its basic components,
i.e. functional units, buffers and resources. The figure also
shows the paths of instructions through the various units. A
detailed description of this architecture is out of the scope
of this paper and can be found in [1]. To verify the cor-

FPFLAG

RFP

ROB

ALUINT

MEMORY

WBACK

MMU

FFLAG
FETCH

RINT DECODE

BPU

FPALL

FPMUL2

FPMUL1

RETIRE

Figure 4: microSPARC-II simulator structure

rectness of the simulator engine, 12 benchmarks, taken from
different application domains, have been simulated and the
total estimated execution time has been compared with the
actual execution time [6]. The actual execution time has
been measured by running the benchmarks on the target
platform configured to enable microstate accounting and to
use high-resolution timers [16]. Each benchmark has been
run with different sets of input data, leading to the over-

Table 2: Simulation accuracy results
Error (%)

Code w/o Memory w/ Memory

adpcm -10.47 -9.23
gsm -11.87 -7.48
lagrange -4.79 -3.01
qsort -8.74 +1.39
g723 -4.20 -3.00
fdct -10.68 -9.48
crc16 -0.83 +2.37
md5 -11.55 +5.15
rle -2.79 -1.59
bsort -2.64 -0.11
matrix -34.27 -3.38

Overall 9.33 4.19

all results reported in table 2 both considering and ignor-
ing memory effects. The delays caused by cache misses,
write-buffer overflows and memory refresh have been cur-
rently determined separately using the SUN Microsystems
proprietary simulator uni per [15]. The overall average er-
ror obtained considering memory effects also is 4.19% with a
standard deviation of 4.72%. This proves that the simulator
has a satisfactory accuracy.

4.2 Estimation model validation
The toolset has then been used to determine the density

functions fDi and fPi for each instruction using a subset of
the benchmarks reported in table 2. For each instruction the
expectation value of the variables Di and Pi have been cal-
culated both with hazard and full classifications. The traces
used for tuning have been generated from the benchmarks
cpp2html, bc, gzip, mandel, and rasta, for an overall trace
length of approximately 1.5 × 108 instructions. This phase
has led to two differently tuned models that have been been
validated by estimating the execution time on all the bench-
marks not used for the tuning phase. Figure 5 shows the
results obtained by annotating the execution traces using
the parallelism coefficients and the timing overheads result-
ing from the two considered classification schemes. In both

bs
or
t

cr
c1
6

md
5

qs
or
t

rl
e

ma
tr
ix

la
gr
an
ge gs

m
fd
ct

g7
23

ad
pc
m

0

1×10
6

2×10
6

3×10
6

4×10
6

5×10
6

6×10
6

7×10
6

C
lo

ck
 c

yc
le

s

Actual
Hazard
Full

Figure 5: Accuracy of classification schemes

cases the accuracy is more than satisfactory. The only excep-
tion is the lagrange benchmark which shows a much higher
error. This is due to the fact that it executes thousands of
times a very tight loop where branch folding occurs with a
probability that is much higher than the average case. Nev-
ertheless, the average relative error is as low as 13% without

classification and 11% with the hazard-based one3. It is
worth noting that using classification leads to an improved
accuracy for two main reasons:

• the resulting model is less sensitive to the instruction
trace used for tuning;

• the peculiar timing behavior of certain (possibly fre-
quent) instructions is averaged with that of more reg-
ular ones, smoothing the effect of borderline cases.

4.3 Performance
The experiments have been performed on a dual-Pentium III

966MHz with 512MB RAM running Linux RedHat 7.2. The
performance of all the processing phases, expressed in num-
ber of instructions processed per second, have been mea-
sured leading to the results summarized in table 3.

Table 3: Toolset performance
Phase Tool Performance

Instruction tracing bintrace 1.9 Minst/sec
Micro-compilation atomic 70 Kinst/sec
Behavioral simulation tribes 4 Kinst/sec
Model tuning tune 90 Kinst/sec
Estimation annotate 140 Kinst/sec

Since the simulation flow involves the first three phases
and since all tools can be concatenated in a single pipeline,
the resulting simulation throughput is around 4 Kinst/sec.
On the other hand, the estimation only requires instruction
tracing which is much faster than estimation itself and thus
does not impact on the estimation performance. The esti-
mation flow is thus roughly 35 times faster than simulation.
This justifies the construction of a model and the partition-
ing of instruction sets into classes.

5. CONCLUSIONS
The paper has presented a flexible approach to execution

time estimation of assembly code for superscalar architec-
tures. The starting point is a rigorous mathematical model
previously developed by the authors and extended to in-
clude the effects of parallel execution and memory access.
The model has proved sound and adequate. Its accuracy
has been demonstrated by implementing a set of tools—
configurable for different target architectures—leading to
an average relative error around 11% for the estimation
flow and below 5% for the simulation flow. The current
efforts concentrate on the definition of a better classifica-
tion scheme, the fine-tuning of the model parameters and
the integration of a complete memory-hierarchy model in
the simulation framework.

6. REFERENCES
[1] G. Beltrame. A Model for Assembly Instruction

Timing and Power Estimation on Superscalar
Architectures. Technical report, Cefriel Institute,
March 2002.

[2] G. Beltrame, C. Brandolese, W. Fornaciari, F. Salice,
D. Sciuto, and V. Trianni. An assembly-level

3Excluding the critical case of lagrange, the error drops to
less than 8%.

execution-time model for pipelined architectures. In
Proc. of Intnl. Conference on Computer Aided Design,
pages 195–200, San Jose, CA, November 2001.

[3] C. Brandolese, W. Fornaciari, F. Salice, and
D. Sciuto. An instruction-level functionality-based
energy estimation model for 32-bits microprocessors.
In Proc. of the 36th Design Automation Conference,
pages 346–350, 2000.

[4] K. Chen, S. Malik, and D. August. Retargetable static
timing analysis for embedded software. In Proc. of the
14th International Symposium on System Synthesis,
pages 39–44, 2001.

[5] T. Conte and C. Gimarc. Fast Simulation of Computer
Architectures. Kluwer Academic Publishers, 1995.

[6] R. Desikan, D. Burger, and S. W. Keckler. Measuring
experimental error in microprocessor simulation. In
Proc. of the 28th Intnl. Symposium on Computer
Architecture, pages 49–58, 2001.

[7] J. Emer. Asim: A performance model framework.
Computer, 35(2):68–76, 2002.

[8] J. Hennessy and D. A. Patterson. Computer
Architecture – A Quantitative Approach. Morgan
Kaufmann Publishers, San Mateo, II edition, 1996.

[9] A. Hergenhan and W. Rosenstiel. Static timing
analysis of embedded software on advanced processor
architectures. In Proc. of the Design, Automation and
Test in Europe Conference and Exhibition, pages
552–559, 2000.

[10] M. Lazarescu, J. Bammi, E. Harcourt, L. Lavagno,
and M. Lajolo. Compilation-based software
performance estimation for system level design. In
Proc. of the 6th Intnl. Workshop on
Hardware/Software Codesing, pages 65–69, 1998.

[11] J. Liu, M. Lajolo, and A. Sangiovanni-Vincentelli.
Software timing analysis using hw/sw cosimulation
and instruction set siumulator. In Proc. of the 6th
Intnl. Workshop on Hardware/Software Codesing,
pages 65–69, 1998.

[12] S. Malik, M. Martonosi, and Y.-T. S. Li. Static timing
analysis of embedded software. In Proc. of the 33rd
Design Automation Conference, pages 147–152, 1997.

[13] S. S. Mukherjee, V. S. Adve, T. Austin, J. Emer, and
S. P. Magnusson. Performance simulation tools.
Computer, 35(2), 2002.

[14] D. Sima, T. Fountain, and P. Klaksuk. Advanced
Computer Architectures – A Design Space Approach.
Addison-Wesley, 1998.

[15] Sun Microsystems. microSPARC-IIep source
distribution. http://www.sun.com.

[16] Sun Microsystems. Prying into processes and
workloads. Unix Insider, 4/1/98.

