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Abstract

The increasing software content of battery-powered embedded sys-
tems has fueled much interest in techniques for developing energy-
efficient embedded software. Source code transformations have pre-
viously been considered for application software to reduce its energy
consumption. For complex embedded software applications, which
consist of multiple concurrent processes running with the support of
an embedded operating system (OS), it is known that the OS and
the application-OS interaction significantly affect energy consumption.
However, source code transformations explicitly targeting these effects
have not been sufficiently studied.

This paper proposes novel transformations for the source code of
OS-driven multi-process embedded software programs in order to re-
duce their energy consumption. The key features of our optimizations
are that they span process boundaries, and that they minimize the en-
ergy consumed in the execution of OS functions and services — op-
portunities which are beyond the reach of conventional compiler opti-
mizations and source code transformation techniques. We propose four
types of transformations, namely process-level concurrency manage-
ment, message vectorization, computation migration and inter-process
communication mechanism selection. We discuss how to systematically
identify opportunities for the proposed transformations and apply them
directly to the program source code.

We have applied the proposed techniques to several multi-process
software benchmark programs, and evaluated their applicability in the
context of an embedded system containing an Intel StrongARM pro-
cessor and embedded Linux OS. Our techniques achieve up to 37.9%
(23.8% on an average) energy reduction compared to highly compiler-
optimized implementations.

I. Introduction

Limited battery life has made energy efficiency a critical issue for
mobile computers and portable embedded systems, such as laptops,
PDAs, cell phones, etc. Recent studies have examined the architecture
of the overall system for energy saving opportunities, which consider
not only hardware components for energy reduction, but also energy-
efficient software design and compilation [1]. Low energy software de-
sign can be performed at three levels of abstraction: instruction level,
program or source-code level, and algorithm level [2]. Instruction-level
techniques [3] have focused on efficient code generation for a program
using energy consumption as the design metric, register allocation to
minimize memory access overheads, and instruction reordering to re-
duce inter-instruction overheads, etc. While these approaches can be
automated in the compilation process, the overall energy consumption
savings is small, and is strongly tied to the processor architecture. Al-
gorithmic approaches, on the other hand, achieve significant energy
savings through careful selection of the algorithms used in the soft-
ware [4], [5]. Since these approaches are mostly based on human intu-
ition and knowledge, significant manual effort is essential for them. In
contrast, program code restructuring approaches achieve the best bal-
ance between energy efficiency and automation. Their impact on en-
ergy consumption tends to be high since they work with a global view
of the program. In addition, such techniques are platform-independent,
making them easily portable to different architectures. In this work, we
propose novel source code transformations that can reduce program
energy consumption.

Several source code transformations proposed for reducing soft-
ware energy consumption have been surveyed in [6], [7]. These tech-
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niques do not consider the effects of the OS, and are applicable to
source code within a single process1. More importantly, conventional
source code transformation techniques do not target the coarse-grained
system-level concurrency and global data flow among multiple pro-
cesses. Our work is based on the fact that, in concurrent multi-process
programs, factors such as inter-process synchronization, data commu-
nication, context switches, OS intervention, etc., can significantly af-
fect the overall energy consumption of an application. Therefore, we
propose several OS-driven source code transformations that reduce the
energy overheads associated with the aforementioned factors as fol-
lows.� Concurrent processes can be managed in an energy-efficient manner
through merging or splitting of processes (process-level concurrency
management).� Inter-process communication (IPC) versus process memory usage
trade-offs can be exploited for energy reductions through buffering of
communicated data (message vectorization).� Computations in one process can be migrated to another process to
reduce the number of IPC and data volume (computation migration).� The IPC mechanism (shared memory, pipe, message queue, etc.)
used for a given communication channel in an application can be se-
lected in cognizance of the communication characteristics of that chan-
nel (IPC mechanism selection).

We experimentally demonstrate the efficacy of the above transfor-
mations in the context of several multi-process programs running on a
single-processor embedded platform. The platform features the Intel
StrongARM processor and embedded Linux as the OS. The proposed
transformations achieve energy savings up to 37.9% (23.8% on an av-
erage) compared to traditional compiler optimizations.

II. Related work
There have been several studies that have analyzed the impact of

the OS on the energy consumption of software and adapted the OS
for low energy. Dick et al. [8] first developed an energy profiler for
applications executing on an embedded system based on the Fujitsu
SPARCLite processor running � C/OS II. Tan et al. [9] developed an
energy simulator, called EMSIM, for an embedded system featuring
a StrongARM processor that uses embedded Linux as its OS. Vah-
dat et al. [10] re-examined the design and implementation of OSs by
taking energy consumption as the primary metric instead of perfor-
mance. Lu et al. [11] implemented an OS-directed power management
scheme in Linux and achieved significant power reductions compared
to hardware-centric shutdown techniques. Pillai et al. [12] proposed
a class of real-time dynamic voltage scaling algorithms and modified
the OS’s real-time scheduler and task management services to provide
significant energy savings. These works mostly focus on redesigning
or modifying the OS to achieve energy savings. Few studies have ex-
amined the usage of source-level software transformations to reduce
the energy overheads associated with OS intervention.

Software synthesis for embedded systems with OSs is another area
wherein the issues of task-level concurrency and data parallelism have
been examined. Given a set of concurrent processes specified in a lan-
guage called FlowC, Cortadella et al. [13] provided a procedure for
extracting tasks from the processes, and scheduling their execution ef-
ficiently on a single processor. This approach is useful in low-end
embedded systems, where there is limited OS support and hence, the
software itself has to explicitly provide many of the OS services. Sgroi
et al. [14] and Thoen et al. [15] provided similar static scheduling al-
gorithms. Prayati et al. [16] explored the issues of extracting concur-

�
The term process denotes the OS notion of a basic concurrent unit

of execution, with its own associated address space and other resources
needed for its execution.



rency between tasks, performing scheduling in the presence of various
constraints and mapping the tasks to different processors in a multipro-
cessor system. They also proposed guidelines for improving the con-
currency of the applications considered. Software architectural trans-
formations were proposed as a means of reducing energy consumption
in [17], based on optimizing an abstract software representation from
which the program implementation is subsequently generated.

Other approaches [18], [19] focus on optimizing the communication
overheads associated with concurrent processes that are specified in a
concurrent language called ERLANG. They do not study the effect
of such transformations on energy consumption. Several source code
transformations have also been proposed to address the data transfer
and storage costs [20] and cache effects [2] in applications.

III. Preliminaries: Embedded system software model
In this section, we describe the embedded system software model

used in this work. We begin our discussion with an overview of multi-
process embedded systems and then present an abstracted system-level
view of the embedded software called control/data flow process net-
work, which is the software model used as the starting point for the
proposed optimizations.

A. The control/data flow process network
We consider a multi-process embedded system to be specified as

a set of concurrently communicating sequential processes that is im-
plemented on a specific single-processor platform with some real-time
requirements. For each process, a set of input and output ports are
defined, and point-to-point communication occurs between processes
through channels between ports [13], [17]. The system communicates
with the environment (for example, the disk, network adapter card,
etc.) through some input and output ports with no channel defined. We
refer to these ports as the primary input and primary output ports of a
process, and the hardware devices (in the environment) connected to
them are called sources and sinks, respectively. We classify the pri-
mary input ports into two classes: controllable (connected to a passive
source) and uncontrollable (connected to an active source). Control-
lable ports, as the name indicates, are under the control of the software.
Thus, objects can be read from them at any given time when the sys-
tem performs an “acquire” operation (e.g., the access of a file on a disk
by the system when it issues a “read” command). Uncontrollable ports
are under the control of the active environment, which sends objects
to the system through the ports. This implies that the system must al-
ways be ready to receive objects from them and react accordingly by
performing operations (e.g., a web-server which responds to the client
requests). At least one process is required for each uncontrollable input
port to react to the event on that port. We only consider the uncontrol-
lable ports as primary inputs.

We consider a hierarchical software representation called the con-
trol/data flow process network. This model captures a process-level
view of the software at the top level, in which only essential con-
trol/data flow and dynamic constructs (e.g., semaphores, IPC, etc.) are
visible. The process network also associates with each process a more
fine-grained view as specified by its function call graph. The software
is profiled to provide this view as well as the various statistics neces-
sary for the proposed inter-process optimizations.

Fig. 1 shows the control/data flow process network for an example
embedded software program that consists of five processes ��������� .
A process is represented by an oval, and the call graphs corresponding
to each process is also available (as seen for processes �	� and ��
 ).
Processes communicate with each other through unidirectional data
communication channels, which are represented by solid directed arcs
(e.g., �������������������������������
����� �!�������#" in Fig. 1). The small black di-
amonds in each process represent the ports for communication. Each
arc is annotated with a $&%('��#)+*,��-�.0/��2143 tuple (profiling-generated
statistics) that indicates the data volume communicated for a single
communication instance ( %('��#)+*,� ) as well as the number of such com-
munications ( .0/��21 ). These data are available for both inter- and
intra-process communications.

External hardware devices ( 5�'�)+6��� � ��5'�)�6���� 
 �758���9 ) in the pro-
cess network are shown as grey boxes. Control flow among pro-
cesses is shown as dashed arcs, and the synchronization mechanism
(semaphore) is labeled along the arcs.

B. Control/data flow process network extraction
In this work, we focus on software programs written in the C pro-

gramming language, which is a non-concurrent imperative language.
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Fig. 1. A control/data flow process network

We consider the POSIX interface [21], since it is supported by a wide
range of popular OSs including Linux and various versions of Unix.
However, the proposed approach and techniques are fairly general, and
are also applicable to other programming languages and OSs.

Starting from the software source code, we derive the process net-
work by (a) defining the boundary of each process, (b) locating the
IPC implementation as well as the communication between the pro-
cess and its outer environment, and (c) determining the control flow
between processes (synchronization). The process network model for
a multi-process embedded system software can be automatically gen-
erated by modifying advanced compilers such as IMPACT [22] and
SUIF2 [23]. Since there are no generic communication primitives in
the C language and POSIX, we restrict our attention to specific imple-
mentations of IPC, namely, pipe, message passing and shared memory,
which are three commonly used mechanisms for data communication.
For the pipe mechanism, a set of two file descriptors is declared glob-
ally and a pipe connecting these two file descriptors is created. The
two file descriptors in this illustration correspond to the communica-
tion ports of a process in the control/data flow process network. The
pipe corresponds to the channel between two processes with data flow
directed from the send process to the receive process. In this way, the
read/write pair in the source code defines the IPC. Instances of system
calls, msgsnd() and msgrcv(), that operate on the same message queue
define the communication pair for the message passing mechanism.
The send process sends a message with a specific type and fixed size
to the queue. The receive process then selects the appropriate message
by matching its type. In the case of shared memory, the IPC is im-
plemented through an update of the shared data region by one process
followed by the access of the data by other processes. Therefore, ex-
plicit synchronization is typical of shared memory IPC so as to avoid
race conditions between communicating processes.

In addition to the IPC mechanisms described above, any read and
write operations that are not part of a communication pair (as in IPC)
correspond to communication between a process and its environment
(i.e., process communication from/to a source/sink, as shown in Fig. 1).
In this way, we can identify all the ports, channels, synchroniza-
tion between processes, primary inputs/outputs, and the corresponding
sources/sinks needed for a control/data flow process network.

IV. Transformation techniques for inter-process optimization

In this section, we illustrate the various transformation techniques
and investigate their application to a few examples.

A. Process-level concurrency management

The basic objective of process-level concurrency management is to
ensure that the number of concurrent processes is minimized to reduce
the intervention of the underlying OS (factors such as context switch,
synchronization and data communication between processes), while
requiring each process to be efficient (e.g., in terms of memory usage).

We will now motivate with an example how merging of processes
can be effective in reducing energy costs.

Example 1: Consider an embedded system that provides seat belt
alerts in cars. Fig. 2(a) shows the control/data flow process network for
this example. Two sensors (seat sensor and belt sensor) collect seat and
belt status data continuously and drive two processes, �!�� 5����(��5���(���
and �!��� ����Z�w5�������� . Another process, *�'���8&��'�6 �`)�������6 , acquires seat
and belt status data from these two processes and monitors the state of



the system. A state transition graph is described in Fig. 2(b), and the
pseudo-code is given in the box on the right.

The system starts in the state marked IDLE. When the seat is taken,
it enters into the SEATED state, and a timer is turned on. If the seat
belt is not fastened until the timer expires, a buzzer is turned on to alert
the driver, and the system enters the BUZZER state. Otherwise when
the belt is fastened in time, the system switches to the BELTED state.
When the driver releases the seat belt or leaves the car, the system
transits to the appropriate states automatically.
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switch(state) {
case IDLE: 

if(seat) {state = SEATED; timer_on();}
break;

case SEATED:
if(belt) state = BELTED;
else if(timeout) 

{buzz_on(); state = BUZZER;}
break;

case BELTED:
if(!seat) state = IDLE;
else if (!belt) 

{state = SEATED; timer_on();}
break;

case BUZZER:
if(belt) {state = BELTED; buzz_off();}
else if(!seat) 

{state = IDLE; buzz_off();}
break;

}
}
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switch(state) {
case IDLE: 

if(seat) {state = SEATED; timer_on();}
break;

case SEATED:
if(belt) state = BELTED;
else if(timeout) 

{buzz_on(); state = BUZZER;}
break;

case BELTED:
if(!seat) state = IDLE;
else if (!belt) 

{state = SEATED; timer_on();}
break;

case BUZZER:
if(belt) {state = BELTED; buzz_off();}
else if(!seat) 

{state = IDLE; buzz_off();}
break;

}
}
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Fig. 2. An example of applying process merging transformation

If we examine the process network to identify opportunities for pro-
cess merging, we can see that� Processes �!�� 5����(�w5����(��� and *�'���8&��'�6 �`)�������6 communicate 1,200
times and each IPC corresponds to a data traffic of four bytes. Thus,
the two processes are candidates for merging (we refer to this transfor-
mation as

i 6�����5kj�'�6�*ml ).� Processes �!��� ����Z�w5�������� and * '���8���'�6 ��)���� ��6 are also candidates
for merging (we refer to this transformation as

i 6�����5kj�'�6�*on ).� Processes �!�� 5����(�w5����(��� and �!��� ����Z��5���(��� are both connected to
active devices implying that merging of the two processes would result
in a process that can potentially miss certain input events (say, while
blocking on one active device, input data from another active device
may be lost). Therefore, these two processes cannot be merged.

In both
i 6�����5kj�'�6�*pl and

i 6�����5kj�'�6�*qn , the number of concur-
rent processes is decreased by one, and one IPC channel is removed.
Consequently, the IPCs on this channel are also removed and the con-
text switch between processes decreases. Thus, we can expect the en-
ergy consumption to be reduced in both the configurations.

Table I validates the above hypothesis by showing energy consump-
tion results for the original and merged configurations. The energy
simulator EMSIM [9] was used to generate the results. The energy
data also show that Transform 1 is better than Transform 2. This is
expected, since the overall inter-process data volume is significantly
reduced in the former case compared to the latter (4,800 bytes as op-
posed to 2,400 bytes).

TABLE I

COMPARISON BETWEEN ORIGINAL AND TRANSFORMED SOURCE CODE FOR THE

SEAT-BELT EXAMPLE

Source code # proc # channels Total energy Reduction
( rts ) (%)

Original 3 2 24.27 -
Transform1 2 1 18.02 25.8%
Transform2 2 1 19.62 19.2%

The above example provides a few general guidelines for process
merging, namely:
1. Two processes P and Q can be merged if the the number of active
devices connected to the resulting merged process does not exceed one,
i.e., either P and Q are driven by the same active device, or only one of
them is driven by an active device.
2. Two processes P and Q are good candidates for merging if the num-
ber of IPCs is high and the communicated data volume is high.

B. Message vectorization
This transformation vectorizes the messages communicated between

two processes, thereby reducing the number of IPCs. We now illustrate
this transformation using the following example.

Example 2: Consider the DrawLine application that is used in many
graphics support systems. DrawLine consists of two main processes,
fill and display, which are shown in Fig. 3(a). The fill process gener-
ates the lines of an image, and passes each line of data to the display
process that is connected to a graphical display device. The lines are
then written line-by-line to the display memory until the image is com-
pleted. The IPC mechanism in this application is a pipe.

Fig. 3(a) also shows the execution profile for the two processes. The
fill process contains a loop with n iterations. In each iteration, it ac-
quires a line and sends the data right away. The display process also
contains a loop with n iterations. In each iteration, the process blocks
and waits for the line from the fill process and writes it to the display
memory. Assuming the image has n lines, and the length of each line
is m, there are n messages (each of size m) sent from the fill process to
the display process.

An alternative software implementation is achieved by applying
message vectorization to this application. Fig. 3(b) shows the trans-
formed source code and the new execution profiles of the two pro-
cesses. In the fill process, the messages are first vectorized or buffered.
They are then transmitted to the display process in a burst. The trans-
formed code has the following properties.� The total volume of messages (which corresponds to the image size)
passed between the two processes remains the same as before.� The number of messages, as well as the number of sends and re-
ceives, are reduced significantly (to one in this case).� The memory usage of the two processes increases since the array
size has increased from * to *vu�� .
Thus, vectorization will remain effective so long as the energy over-
heads of buffering do not outweigh the gains of reducing the number
of messages communicated.
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fill process:
… …

//fd[0]/fd[1] are already generated by pipe()
char  l i ne[ m] ;
f or ( i =0;  i <n;  i ++)  {

l i ne = ( char  * ) acqui r e_l i ne[ i ] ;
//send message (line data) through channel
wr i t e( f d[ 1] ,  l i ne,  m) ;

}

display process:
… …
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Fig. 3. Applying message vectorization to the DrawLine application

TABLE II

COMPARISON BETWEEN ORIGINAL AND OPTIMIZED SOURCE CODE FOR THE

DRAWLINE APPLICATION

Source code Total energy( rts ) # proc # channels # IPCs
Original 8.24 2 1 1024
Optimized 7.17 2 1 1

Reduction 13.0% 0 0 1023

Table II summarizes the energy consumption results for the two
cases. Due to message vectorization, the number of IPCs is reduced
from 1,024 to 1. The total energy consumption is reduced by 13.0%,
thus demonstrating the efficacy of this transformation.

C. Computation migration

This transformation relocates computations from one process to an-
other so that the energy overheads due to synchronization and IPC get
reduced. In the following example, we examine the basic notion of
computation migration, and the various issues associated with it.



Example 3: Fig. 4(a) shows the execution profile of a signal pro-
cessing application with three processes, � � , ��
 and ��" . The
parallel lines represent the execution time-lines of the three pro-
cesses. Functions �!�� 5���*�������5�${3 and �!�� �`' �Aj j�8���8{�����w5�${3 (in
processes � � and ��" , respectively) generate data 5��*��+��� and
��'��Aj j that are inputs to function ��'�*��+) ��� j�8X�]����6 ${3 in process
� 
 . Function ��'�*��+) ��� j�8X�]����6 ${3 processes these data and generates
data j�8{�Z����6��(�(��� l , j�8{�Z����6��(�(��� n and j�8{�Z����6��(�(����� , which are used
subsequently by functions )�5�� j�8X�]����6��(�(��� l , )�5�� j�8{�Z����6��(�(��� n and)�5�� j�8{�Z����6��(�(����� . Edges between the different functions indicate the
IPC or intra-process communication described above. In addition, each
edge is annotated with an $	��-�
 3 tuple, where � denotes the average
per-communication data volume and 
 indicates the number of com-
munications. For example, we can see from the profile that, on an av-
erage, four bytes of 5��*��+��� are transmitted in a communication from
�!�� 5��*�������5�${3 to ��'�*��+)���� j�8{�Z����6 ${3 and that this data communica-
tion occurs 128 times.

Consider the computation corresponding to �`'�*��+)���� j�8{�Z����6!${3 in
process ��
 . The function sums the data obtained from � � ( 5���*������ ),
which are weighted by the coefficients ( ��'��«j j ) from � " , and filters
the results at different rates to the three processes. In the figure, we
can see that each computed value ( 5)+* ) is sent to � � as j�8{�Z����6��(�(��� l
so that the total number of IPCs from � � to � 
 is 128 (i.e., data are
filtered at the full rate). However, the results are filtered to � 
 at half
that rate. Since )�5�� j�8X�]����6��(�(��� n�${3 and ��'�*��+) ��� j�8X�]����6 ${3 are in the
same process, there is no IPC occurring, implying that the number of
intra-process communications is 64. Finally, results are filtered to � "
at a quarter rate resulting in 32 IPCs from � 
 to ��" .
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While(1) {

if (j==128) break;
SELECT(sample, coeff);
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c = coeff; break;

case sample:
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j++;
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Fig. 4. An example of computation relocation among processes

Assume that all the IPC mechanisms implemented in this example
are the same. For any specific mechanism, consider the energy macro-
model, which is given by the equation.

JLKNMPORQ uS� (1)

In Equation (1), � represents the number of bytes communicated,
M

represents the base energy consumption of a single IPC and
Q

is the
extra energy consumed per byte.

For a given process �UT , we can estimate the energy costs due to IPC
with respect to a given computation 1 in any other process as follows.
Let �WV be the total amount of source operand data that � T contributes
to 1 , �YX the amount of result data of 1 that is consumed by �ZT , � V the
number of source data communications, and �[X the number of result
data communications. Then, Equation (1) can be modified to yield the
overall IPC cost for a process �UT and a computation 1 (not in �UT ) as
follows. J T K\M u $&� V O �]X�3 ORQ u $	� V O �WX3 (2)

For example, if we consider process � � and computation
��'�*���)���� j�8{�Z����6!${3 , then the various parameters in Equation (2) are
available from Fig. 4(a). Table III lists the relevant information for the
three processes.

TABLE III

INTER-PROCESS AND INTRA-PROCESS COMMUNICATION STATISTICS FOR THE THREE

PROCESSES ^ � , ^�_ AND ^a` WITH RESPECT TO FUNCTION bdc�rfe�gih:j kil�m�h:jdn�o�p
Process q�r str qFu s�u q�r]vwqFu strxvysiu

( zD{|h:j~} ) ( z�{�h:j5} ) ( z�{�h:j5} )
^ � 128 512 128 512 256 1,024
^ _ 0 0 64 256 64 256
^ ` 128 512 32 128 160 640

Consider now the question of migrating the computations in
��'�*��+)���� j�8{�Z����6 ${3 to either process � � (termed MIGRATION1) or ��"
(termed MIGRATION2), instead of remaining in � 
 (termed ORIGI-
NAL). For the three configurations, we can evaluate the total energy
costs using the energy macro-model given in Equation (2) for three
different IPC mechanisms (pipe, message passing and shared mem-
ory). The actual

M
and

Q
values are provided in Table V later. From

the results shown in Table IV, we can see that irrespective of the IPC
mechanism, MIGRATION1 is the most energy-efficient.

In order to understand the results, let
J��

denote the IPC cost of
process � � for the �`'�*��+)���� j�8{�Z����6!${3 computation. In this example,J ��� J "�� J 
 irrespective of the IPC mechanism used since � � has
the largest � V O �]X and � V O �WX values and ��
 has the smallest � V O �]X
and � V O �WX values. Assuming that relocating the computation part to
different processes only induces different IPC energies, and the other
energies remain the same, we can only compare the IPC energies as a
first order of approximation. For the ORIGINAL case, the IPC cost isJ��F�I�����*�F�F�

=
J � O�J " . When computation is relocated to � � (MIGRA-

TION1) as shown in Fig. 4(b), the IPC cost becomes
J��������I���t���F���

=J 
 O�J " . Similarly, when relocated to ��" , the IPC cost is
J �������I���t���F�a�

=
J � O�J 
 . Thus,

J �F�I���F�*���F� � J �������I���t���F�a� � J �U���F�I���t���F�a�
, im-

plying that relocating computation to � � , as shown in Fig. 4(b), should
be the most energy-efficient transformation. Table IV verifies the re-
sults by comparing the energy consumption obtained using EMSIM
between original and transformed source code. For each version of
source code, the three different IPC mechanisms are implemented.

D. IPC mechanism selection

IPC selection refers to the process of choosing the most energy-
efficient IPC mechanism (from among the alternatives supported by
the OS) for each IPC. In this section, we discuss scenarios wherein
one IPC mechanism is energy-wise more efficient than another, sup-
ported by energy macro-models for three popular IPC mechanisms in
embedded Linux.

In order to derive the energy macro-models, we created three test ap-
plications. Each application consists of a communication pair with one
shared memory, one message queue, and one pipe, respectively. Each
mechanism has its own implementation for one-time IPC, as stated in
Section III-B. The communicated data remain the same in each case.
We parameterized each application in terms of the number of IPC op-
erations executed by enclosing the IPC operation in a loop body. Since
our objective is to build an energy macro-model for the different IPC
mechanisms, we first obtained the energy estimates using the EMSIM
simulator, for each IPC mechanism, and for varying number of IPC
operations and fixed data volume of each IPC. We then studied the de-
pendency of IPC energy costs on the inter-process data volume. This
is because communication complexity (not just IPC frequency) affects
performance and energy consumption.

Using the above approach, we derived the energy macro-model for
the three IPC implementations shown in Table V.

The macro-model consists of two terms. The first term corresponds
to a base or constant cost, which reflects the energy overhead due to
a single IPC, while the second term denotes the energy variation with
data volume. Generally, when no synchronization or memory protec-
tion method is employed, shared memory tends to be very energy-
efficient (as shown in the first row of Table V). The main reason is
that shared memory update and access (IPC) do not involve additional
OS system calls, while the other two mechanisms require OS sup-
port for implementing send and receive. Note that, without protection,
shared memory IPC can induce inconsistency when multiple processes
have write access to the shared memory. Therefore, we implement a
semaphore based synchronization method for shared memory, and the
second row of Table V shows the corresponding IPC energy macro-
model. After considering the energy consumed by synchronization,



TABLE IV

COMPARISON BETWEEN THE ORIGINAL AND TRANSFORMED SOURCE CODE FOR THE COMPUTATION MIGRATION EXAMPLE

Source code Total energy ( rts ) # proc # IPC volume of
configuration Pipe Shared Mem Message IPC data ( z�{�h:j~} )
ORIGINAL 36.26 37.97 39.33 3 416 1,664
MIGRATION1 28.08 29.43 30.74 3 224 896
MIGRATION2 30.99 31.17 32.33 3 320 1,280
Reduction 22.6% 22.5% 21.8% 0 192 768

we observed that shared memory IPC is similar to the other two mech-
anisms in terms of energy consumption.

TABLE V

ENERGY MACRO-MODELS FOR DIFFERENT IPC MECHANISMS IN LINUX

IPC mechanisms Macro-models ( ��� )
(with x bytes)

shared memory
J K������ � O�� l � �i���

shared memory
J K n/n
	�� � �O�� l � �i���

(with semaphore protection)
pipe write/read

J K l���	¦n � ��O n � �  �
msgsnd/msgrcv

J K n  l�� � ��O � � � lC�
We also observed that pipe tends to be more energy-efficient com-

pared to message passing, possibly due to the overheads associated
with message copying and message queue handling (e.g., keeping the
messages in the queue, type matching, etc.).

V. Case Studies

This section presents the results of applying the proposed transfor-
mations to two example software applications: an underwater naviga-
tion control system [24] and an Ethernet packet processing system [8].

A. Methodology

We employ a simple design flow for systematically applying the var-
ious transformations in the case studies. Starting from the original C
source code, we first profile and extract the control/data flow process
network, as described in Section III. For the suite of transformations
proposed in this paper, we determine the best candidate transforma-
tion by using the IPC energy macro-models described in Section IV-D
as well as the energy macro-models for other explicit OS services in
the source code (obtained from [25]). We then select the candidate
transformation that has the least energy costs, apply it to the source
code, and repeat the above steps for the modified source code. When
no further energy savings are possible, the flow terminates.

In both the case studies, our flow considers all possible process
merging opportunities. For message vectorization and computation
migration, we evaluate a designer-specified set of buffer sizes and can-
didate computation/destination process pairs, respectively. For IPC
mechanism selection, we consider the scenario when pipe or message
passing or shared memory is exclusively used in the application.

For the results presented in the following sections, we use the en-
ergy simulator EMSIM [9] to estimate the energy consumption of an
application (original and transformed source codes) running on an In-
tel StrongARM processor under an embedded Linux OS. The simulator
executes on a 550 MHz Pentium Pro III Linux workstation with 256
MB memory.

B. Case study: An underwater navigation system

We optimize the underwater vehicle navigation system designed
in [24]. Fig. 5(a) shows the control/data flow process network derived
from its specification. Four external devices, GPS receiver, Pressure
sensors, Speed sensors and Altitude sensors collect various raw data
periodically, which are consumed by the four processes Handle GPS
protocol, Estimate depth, Estimate speed and Estimate Altitude. These
processes then estimate the approximate position parameters given by
fix, depth, speed, and altitude. The Main process performs the role
of a central monitor and triggers the four processes. Two other pro-
cesses, namely, Coordinate transform and Integrate velocity, operate
on the estimated data, and generate the approximate system position
for display on the navigation screen. We have annotated the edges of

the process network shown in Fig. 5(a) with the IPC statistics gener-
ated through profiling. The original source code uses shared memory
as its IPC mechanism.
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Fig. 5. The control/data flow process network for the underwater vehicle navigation system
and example process merging transformations

We applied the transformations framework described in Section V-A
to the original source code of the system, and determined a sequence of
transformations that can best reduce the energy consumption, shown as
the line on the left in Fig. 6. The transformations performed are as fol-
lows. Two process merging transformations (PM) are performed first,
as shown in Figs. 5(b) and 5(c). The first transformation merges pro-
cesses Estimate altitude and Coordinate transform, while the second
merges the resultant process with Integrate velocity into a single pro-
cess. The two process merging transformations reduce the overall IPC
data volume by 61.5% and achieve significant energy savings (nearly
29.6%). Also, the number of processes is reduced to a minimum. The
process merging transformations are followed by three message vec-
torization (MV) instances interleaved with one IPC mechanism selec-
tion (REPL). The IPC mechanism selection (REPL) results in pipes
replacing the shared memory mechanism. Note that no computation
migration is required for this case study. The energy reduction corre-
sponding to the final optimized source code is 37.9% with the number
of processes reduced to 5 (from 7), number of IPCs reduced to 3 (from
50) and IPC data volume reduced by 61.5%.
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Fig. 6. Comparison of two different sequences of transformations

Fig. 6 also compares the optimization profiles of the above sequence
of transformations with an alternative ordered sequence of transforma-



tions. For the alternative sequence, we used the following order: mes-
sage vectorization followed by computation migration, process merg-
ing and IPC mechanism selection. The figure shows that the final
transformed code in both the cases achieve similar energy savings.
However, the number of transformations needed in our framework is
smaller than the alternative scenario. In general, our experiments sug-
gested that considering process merging transformations first resulted
in the best energy savings with the least number of transformations,
since process merging tends to have the largest impact on energy, and
also indirectly influences the IPC (IPCs between merged processes are
eliminated).

C. Case study: Ethernet packet processing system

The Ethernet packet processing system [8] is used at the lowest level
of a TCP/IP based protocol stack. The system listens to the network
ports, receives incoming packets, derives the checksum for the packet
data and processes the packet header for transmission information. The
packets are subsequently transmitted to the output devices periodically,
driven by a timer.

Fig. 7(a) shows the most direct implementation of this system with
three processes. Process Receive packet waits for incoming packets.
Upon receiving a packet, it hands the packet over to the process la-
beled Checksum & header handling. Subsequently, the packet (with
the checksum field filled) is passed to the Transfer packet process,
which dispatches the packet to output devices. This implementation
is very responsive, but each packet induces IPC twice, as annotated in
the figure, which is expensive in terms of energy and execution time.
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Fig. 7. The top-level control/data flow process network for the original and transformed
implementations of an Ethernet packet processing system

Fig. 7(b) shows the transformed control/data flow process network
for the system derived by our framework. The transformations used
are process merging and vectorization, and the corresponding process-
level statistics and energy consumption data for the original and trans-
formed source codes are listed in Fig. 8(a). Process merging results
in a single process, Packet processing, that encapsulates the compu-
tations corresponding to processes Receive packet and Checksum &
header handling. In addition, the process buffers a packet into a fixed-
size buffer after the checksum is computed. When the buffer is full, all
the buffered packets are transferred to process Transfer packet. Thus,
the number of IPCs among the processes is reduced greatly. IPCs are
implemented with pipes in both the original and transformed cases.

We also analyzed the effect of buffer size on overall energy con-
sumption. Fig. 8(b) plots the energy consumption variation for various
buffer sizes. We observed that with a buffer size of 20 packets, we can
achieve the highest energy reduction (27.9%) compared to the original
implementation. We also observe the trade-off between system mem-
ory usage and IPC overhead from this figure.

VI. Conclusions

In this work, we explored the OS-driven interface between processes
in embedded software applications and proposed a novel set of source
code transformation techniques that reduce energy consumption. We
manage process-level concurrency through process merging to save
context switch overhead and IPC. We modify the process interface by
vectorizing the communications between processes and selecting an
energy-efficient IPC mechanism. Finally, we also attempt to relocate
computations from one process to another so as to reduce the number
and data volume of IPCs. This set of transformations provides comple-
mentary optimization strategies to traditional compiler optimizations
for energy savings.
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