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Abstract
Efficient energy and performance estimation of embedded software is a crit-
ical part of any system-level design flow. Macromodeling based estimation
is an attempt to speed up estimation by exploiting reuse that is inherent in
the design process. Macromodeling involves pre-characterizing reusable
software components to construct high-level models, which express the ex-
ecution time or energy consumption of a sub-program as a function of suit-
able parameters. During simulation, macromodels can be used instead
of detailed hardware models, resulting in orders of magnitude simulation
speedup. However, in order to realize this potential, significant challenges
need to be overcome in both the generation and use of macromodels— in-
cluding how to identify the parameters to be used in the macromodel, how to
define the template function to which the macromodel is fitted, etc. This pa-
per presents an automatic methodology to perform characterization-based
high-level software macromodeling, which addresses the aforementioned is-
sues. Given a sub-program to be macromodeled for execution time and/or
energy consumption, the proposed methodology automates the steps of pa-
rameter identification, data collection through detailed simulation, macro-
model template selection, and fitting. We propose a novel technique to iden-
tify potential macromodel parameters and perform data collection, which
draws from the concept of data structure serialization used in distributed
programming. We utilize symbolic regression techniques to concurrently
filter out irrelevant macromodel parameters, construct a macromodel func-
tion, and derive the optimal coefficient values to minimize fitting error.
Experiments with several realistic benchmarks suggest that the proposed
methodology improves estimation accuracy and enables wide applicability
of macromodeling to complex embedded software, while realizing its poten-
tial for estimation speedup. We describe a case study of how macromodel-
ing can be used to rapidly explore algorithm-level energy tradeoffs, for the
zlib data compression library.

Categories and Subject Descriptors
I.6.5 [Computing Methodologies]: Simulation and Modeling -
Model development - Modeling methodologies; D.2.8 [Software]:
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1. INTRODUCTION
Efficient performance and energy estimation are fundamental

concerns in the design of embedded software. Simulating the exe-
cution of embedded software on models of the underlying proces-
sor platform is the most widely used approach for performance and
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energy estimation. While simulation efficiency has been the sub-
ject of significant research effort, rapid growth in the complexity of
embedded software (the number of lines of code in a typical em-
bedded application is estimated to double every 10 to 12 months on
an average, i.e., even faster than Moore’s law) implies that efficient
performance/energy estimation for embedded software will remain
a challenge for the foreseeable future.

Our work is based on the observation that large embedded soft-
ware programs are rarely written from scratch — reliable design,
subject to stringent design turnaround time and design cost con-
straints, mandates substantial reuse. An analysis of the dynamic
execution traces of embedded programs reveals that a large fraction
of the time consumption arises from reused software components
(including embedded operating systems, middleware, run-time li-
braries, domain-specific algorithm libraries, etc.). As an example,
our experiments with the popular compression utility gzip, showed
that, on an average, 90% of gzip’s execution time is spent in calls
to the gzip library1 package, 8% in calls to the standard C library
functions, and only 2% in code specific to the gzip program, or
what is frequently known as “glue code.” It is hence not surpris-
ing that reusable software modules account for a major fraction of
simulation or estimation effort.

It is natural to wonder whether reuse, which saves significant
design effort, can also be exploited to reduce estimation effort.
Characterization-based macromodeling takes a step in the above
direction by enabling the extraction of fast, higher level models of
reusable software components, based on pre-characterization using
more detailed, slower models. The effort expended in the construc-
tion of macromodels for a software module is amortized over the
large number of applications of the macromodel when the module
is simulated in the context of all the programs that include it.

The rest of this paper is organized as follows. We describe
the contributions of this paper in Section 1.1 and discuss related
work in Section 1.2. In Section 2, we identify the major chal-
lenges involved in macromodeling. Section 3 describes in detail
how the proposed macromodel generation methodology overcomes
the identified challenges. Our implementation and experimental re-
sults are presented in Section 4, and conclusions in Section 5.

1.1 Paper Contributions
The complexity of modern embedded software poses significant

challenges for both the generation and use of macromodels. In
this work, we identify key limitations of the state-of-the-art in soft-
ware macromodeling. Notably, significant manual effort is required
from the software designer towards the identification of suitable
parameters, and a template function on which the macromodel is
based. Addressing these problems, while maintaining sufficient
generality in order to handle a wide range of embedded software
programs is quite challenging. We propose a methodology to au-
tomate the critical steps of parameter identification, data collec-
tion through accurate simulation or measurement, and construction
of the macromodel function while simultaneously optimizing the
values of macromodel coefficients for achieving the best fit. Our
work draws inspiration from concepts presented in the fields of dis-
tributed programming (automatic data structure serialization), and
recent advances in statistical data analysis (symbolic regression).
We also demonstrate the practical application of macromodeling to
software libraries of significant complexity.

1The gzip library is used by software packages that internally use
the gzip compression engine.
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extern void bg compute scc ( /*BGRAPHPTR bgr;*/);
struct bgraph {

int first, last;
int no vertices;
BOOLEAN *active;// v is active when
//active[v] is T
LISTPTR *vlist; // adj list representation
LISTPTR *scc; // records the strongly
//connected components
int *v2scc; //records the scc
//corresponding to vertex
int scc valid; // 1 when scc
//corresponds to vlist, else 0

};
typedef struct list LIST;
typedef struct list *LISTPTR;
typedef long LISTOBJ;
struct list { // linked list structure

LISTPTR next; // doubly linked list
LISTPTR prev;
LISTOBJ o; // object in the list

};

Figure 1: Function bg compute scc and associated data
structures

1.2 Related Work
We discuss related work in the areas of macromodeling for hard-

ware power simulation, efficient software performance and en-
ergy estimation, and fast instruction set simulation. Macromod-
els for register-transfer level (RTL) components can be constructed
through characterization of their logic-level hardware models and
have been used extensively in RTL power estimation [1, 2]. Tech-
niques to speed up cycle-accurate instruction set simulation have
received significant attention. Instruction-set simulation can be ac-
celerated with little or no loss of accuracy using compiled simu-
lation [3], combining compiled and interpreted simulation [4], or
by optimizing the implementation of different functions such as in-
struction fetch and decode [5] in the instruction set simulator (ISS).
Hybrid simulation techniques for energy estimation were proposed
in [6]. Delay and energy caching (reusing the execution time and
energy consumption results from previous simulations of a program
segment) are used to speed up estimation in [7, 8].

An alternative approach to embedded software power analysis is
to use cycle-accurate and structure-aware architecture simulators,
which can identify the architectural blocks activated in each cycle
during a program’s execution, and record the stream of inputs seen
by them [9, 10]. Software macromodeling at the granularity of
functions or sub-programs was explored in [11, 12], demonstrating
that orders of magnitude speedup in estimation time could be ob-
tained, while maintaining high estimation accuracy. Performance
characterization of library functions using statistical and semantic
properties of function arguments was recently presented in [13]. In
summary, the importance of embedded software performance and
energy estimation has fueled significant research effort but macro-
modeling for software sub-programs of arbitrary complexity has
remained a relatively unexplored area, and many important issues
have not been addressed. To the best of our knowledge, this is the
first work to automate all the key steps in macromodel generation
and demonstrate the applicability of fully automatic macromodel-
ing to software programs of realistic complexity.

2. MOTIVATION
In this section, we describe the key challenges involved in

macromodel generation for complex software programs, and il-
lustrate them through the task of constructing an energy macro-
model for the bg compute scc function taken from a commer-
cial graph data structure library. The C prototype of function
bg compute scc is shown in Figure 1, along with a descrip-
tion of its input data structures. The bgraph structure contains
various dynamically allocated fields, including an adjacency list
representation of the graph’s connectivity, and fields to store the
identified strongly connected components (SCCs). In addition to
the software implementation of the graph data structure library and
several testbenches that exercise its functions, we are given a cross-
compilation tool chain for the target StrongARM based embedded
system, as well as a cycle-accurate ISS that reports energy con-

sumption [14, 15]. Any automated approach to generating a macro-
model needs to address the following key challenges:

• Selection of macromodel parameters: In general, macro-
model parameters, which are the independent variables used
in the macromodel, can include the size or value of any field
nested arbitrarily deep within the input or output data struc-
tures. The number of candidate parameters can be very large
even for simple software functions. However, an efficient
and robust macromodel must include only relevant parame-
ters that have an actual impact on energy consumption. For
the bg compute scc function, if we consider the values of
all nested fields of scalar data types and the sizes of all nested
fields of complex types, we can identify 2n+e+s+9 poten-
tial candidates for macromodel parameters for a graph with
n vertices, e edges, and s SCCs. The number of possible
relevant subsets of parameters is 22n+e+s+9. While in some
cases, human understanding and insight may reveal that only
a small subset of parameters may largely determine the ex-
ecution time or energy consumption, an automatic tool pro-
cessing the source code does not have the luxury of human
insight.

• Data collection: Once a candidate set of macromodel param-
eters is identified, characterization experiments must be per-
formed to obtain values of the candidate macromodel param-
eters and the corresponding value of the dependent variable
(energy or execution time) for numerous execution instances.
Capturing the macromodel parameter values requires run-
time tracing of the size of dynamically-created data struc-
tures as well as values of nested atomic fields. In practice,
this is not a simple task — the number of levels of pointer
traversals that have to be performed to access all scalar fields
may vary dynamically, and conventional size computation
utilities (such as sizeof in the C programming language)
do not perform pointer traversal, i.e., they do not include the
size of objects pointed to by fields in the given object.

• Macromodel function construction: Given the data gathered
from characterization, determining a suitable function to ap-
proximate the collected data can be a daunting task. The
search space of functions is highly intractable (infinite in the
case of real-valued functions). Conventional approaches to
macromodeling circumvent this problem by requiring the de-
signer to manually specify a macromodel template. While
various templates have been suggested, in [12] for example,
template identification is in practice an ad hoc and tedious
process that demands a detailed understanding of the target
function.

We present techniques using type analysis, data serialization
concepts and symbolic regression to overcome these challenges,
making it possible to significantly extend the applicability of
macromodeling to complex software, while greatly simplifying
macromodel construction and minimizing the need for human in-
tervention.
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Figure 2: Energy estimates from macromodeling and
instruction-level simulation for bg compute scc

To illustrate the utility of our methodology, we used
it to construct an energy consumption macromodel for the
bg compute scc function shown in Figure 1. The resulting
macromodel equation, which relates energy consumption to the
size2 of the input argument bgr and values of its member fields,
is as follows:
2We define our notion of size in Section 3.1
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Energy = (5.83E − 6) ∗ last ∗ size(bgr) + (0.5934) ∗
no vertices − (0.576) ∗ last + (3.625E − 4) ∗ size(bgr).

A model in terms of function arguments, like the one shown
above, also has the additional advantage of being well-suited to au-
tomated macromodel application within a larger estimation frame-
work, because the model parameters should be readily available
in any software simulator. A comparison of the energy estimates
from the use of the macromodel vs. the energy estimates from
instruction-level simulation for various input instances, as shown
in Figure 2, shows them to be in close agreement with instruction-
level estimates, with an average estimation error of just 0.7%.

3. AUTOMATIC MACROMODELING
METHODOLOGY

Figure 3 presents an overview of the proposed macromodeling
methodology. Starting with the source code for the target func-
tion to be macromodeled, and a testbench that thoroughly exer-
cises the target function over a wide range of input instances, the
methodology consists of a sequence of steps that culminates in
the generation of macromodels which approximate the energy con-
sumption or execution time of the function. Two parallel compi-
lation and execution flows are used to collect the data necessary
to construct the macromodel. First, the source code is subject to
parsing and type analysis, based on which our tool automatically
generates data structure traversal and serialization routines and in-
struments the source code to invoke them at appropriate locations.
The instrumented source code, traversal and serialization routines,
and testbench are compiled and executed (any functionally accu-
rate execution environment suffices for this step). During execu-
tion, the traversal and serialization routines dynamically enumerate
and collect the values of candidate macromodel parameters. Cross-
compilation and instruction-level simulation of the uninstrumented
target source code and testbench is used to obtain the energy con-
sumption and execution time for each execution instance of the tar-
get function. The collected instance-by-instance profile database,
which contains values for all the independent and dependent vari-
ables, is then fed to the symbolic regression engine to produce the
macromodel.

The rest of this section describes the key steps of our methodol-
ogy, which are highlighted as shaded rectangles in Figure 3.

Figure 3: Overview of the proposed automatic macromodeling
methodology

3.1 Data Collection
Our data collection tool parses the input C files3 to collect in-

formation about data types and function arguments in the program,
which is used to suitably instrument the input program.
3Although our specific implementation is for the C programming
language, the concepts presented in this work are fairly language-
independent.

We use argument sizes and values of the input and output data
structures of the target function, as well as their nested fields, as
model parameters.

We define argument size of a data structure as the number of
bytes it would occupy if it were serialized. Serialization is the pro-
cess of converting structured data to serial byte streams for the pur-
pose of storage or transmission, as in a remote procedure call [16].

We use type analysis to automatically generate code that com-
putes argument sizes. In compiler theory [17], two types of data
types are identified: basic types (e.g, int, char, float) and
type constructors (e.g, pointers, arrays, and structures). Our object
size calculations utilize rules associated with each basic type and
type constructor. The size of basic types can be directly obtained
using language facilities. The size of a structure is the sum of all
nested fields. Pointers are recursively traversed using indirection
until a non-pointer type is obtained, whose size is then taken as
the size of the pointer. Array sizes can be calculated similarly but
require knowledge of array bounds at runtime. While C implemen-
tations do not in general maintain array bounds, C functions that
have array arguments usually also include other arguments speci-
fying array bounds.

Callee function argument sizes are computed dynamically by
code inserted in the caller function that calls the target function,
immediately before and after the call. The framework described
above enables run-time calculation of object size and other inter-
esting information. For example, the size of a linked list object
would be calculated as the sum of the sizes of all elements of the
linked list. As a more complex example, consider the bgraph
structure shown in Figure 1. Most macromodel templates for
bg compute scc would require data about the number of ver-
tices, n, and number of edges, e, in the graph. From the value
of field no vertices, n can be obtained directly. Calculating e
requires recognizing that vlist (the graph’s adjacency list) is ac-
tually an array of size no vertices of LISTPTR objects. Hence, the
size of the vlist field ends up serving as a good estimate of e.

3.2 Macromodel Construction Using Sym-
bolic Regression

The data collected through characterization experiments should
be used to construct a macromodel relating the target function’s
energy or execution time to a subset of the potential macromodel
parameters. We perform this critical step through the use of sym-
bolic regression, which was first introduced as an application that
combined the fields of statistical data analysis and genetic program-
ming (GP) by Koza [18]. GP is used to evolve formulae containing
the identified model parameters and a chosen set of mathematical
operators. Based on extensive experimentation, we found the set
F = {+,−,×, /, x2, x3, and log(x)} of operators to be quite ad-
equate for our modeling needs.

We used an extended form of Koza’s symbolic regression tech-
nique, called Hybrid GP (HGP) [19], to increase the numerical ro-
bustness of symbolic regression. HGP extends Koza’s symbolic
regression by introducing weights for all additive terms in the ge-
netically derived regression formula. Classical linear regression is
used to tune the weights.

4. IMPLEMENTATION AND RESULTS
In this section, we discuss our implementation and present exper-

imental results demonstrating the benefits of the proposed method-
ology.

The instrumentation and data collection steps in our methodol-
ogy were implemented using a YACC based parser [20] and several
PERL scripts. Our implementation of symbolic regression is based
on the GP kernel gpc++ [21] and libraries for symbolic [22] and
numerical manipulation [23].

We conducted several experiments using a variety of bench-
mark software programs to demonstrate the utility of our automatic
macromodeling framework. Table 1 shows how the macromod-
els obtained using our framework perform compared to execution
times and energy consumption values obtained through a combina-
tion of extensive simulations and measurements from real imple-
mentations. The benchmarks have been given descriptive names to
indicate their function. For each benchmark, a sample set of 500 in-
put instances (data sets) was used to develop the macromodel. The
error associated with a macromodel is defined as the root mean
square (RMS) deviation from observed values (obtained through
instruction-set simulation or measurement), taken over the entire
sample set. The symbolic regression tool was programmed to ter-
minate after fifty GP generations or when the error dropped to less
than 1%, whichever occurred sooner.
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Table 1: Macromodeling examples
Example Source Perf. Error Energy Error
convex hull 2dch [24] 0.2% 0.3%
bg compute scc NEC Labs 0.3% 0.7%
shortest path wnlib [25] 0.3% 0.5%
linked list sort NEC Labs 0.1% 0.1%
simplex wnlib 0.8% 0.5%
bipartite matching bipm [26] 0.8% 0.9%
strncat glibc 0.9% 0.2%
qsort glibc 0.1% 0.4%
malloc glibc 0.4% 0.4%
bsearch glibc 1.3% 0.3%
pow glibc 0.3% 0.7%

We chose the SimIt-ARM-1.1 cycle-accurate ARM ISS [27]
as our measurement platform because of its high simulation speed.
The execution time of a code segment was determined as the
difference in execution times of two versions of the benchmark,
one with the execution of the target function enabled, and the
other with it disabled. To compute energy consumption, we ex-
tended SimIt-ARM-1.1, in a manner similar to the tool dis-
cussed in [15], to report processor and memory energy estimates,
using the instruction and memory power models reported in [14]
and [28], respectively.

4.1 Case Study: Energy Tradeoffs during
Lossless Data Compression

In this section, we explore the use of macromodels in making
algorithmic tradeoffs using the zlib [29] compression library.
zlib can be embedded into any software application in order to
perform lossless data compression. The compress2() function pro-
vided by zlib, whose interface is given by int compress2 (Bytef
*dest, uLongf *destLen, uLong sourceLen, int level), allows the
user to vary the computational effort expended in compression by
using the level function argument that takes values from zero (no
compression) to nine (maximum compression).

We developed a macromodel for the energy consumed by the
compress2 function using the proposed methodology, and used
it to study the tradeoff between energy consumption and the ac-
tual compression ratio achieved, for various values of the level
parameter, over 300 files of various types ranging in size from 1
byte to 1 MB. It can be seen from the results of this experiment
in Figure 4 that the average energy consumption increases mono-
tonically with level but the compression ratio does not, indicat-
ing that not all compression levels are Pareto-optimal in terms of
the above metrics. The figure also shows that macromodel esti-
mates are in close agreement with energy estimates obtained using
SimIt-ARM. Furthermore, the macromodel based approach has
the same relative trend as the simulation based estimates, which
makes it suitable for high-level design space exploration. The ad-
vantage of macromodeling is evident from the fact that estimation
using the macromodel for all the input samples required less than a
minute, while the ISS took over a day to complete.
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Figure 4: Using macromodeling to explore compression vs. en-
ergy tradeoffs

5. CONCLUSIONS
We presented a systematic methodology to automate the gener-

ation of energy and performance macromodels for embedded soft-
ware. The proposed methodology radically simplifies macromodel

construction, while expanding its applicability to complex embed-
ded software. Furthermore, the use of properties of program data
structures, including function arguments, as model parameters sim-
plifies macromodel use, enabling usage in conjunction with any
simulation environment. For example, macromodels could be in-
tegrated into an instruction-level simulation environment, so that
some parts of the code are handled using macromodels, while glue
code or parts that are difficult to macromodel are simulated using
conventional techniques.
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