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ABSTRACT 
This paper addresses the problem of estimating cost and 
development effort of a system, starting from its complete or 
partial high-level description. In addition, some modifications to 
evaluate the cost-effectiveness of reusing VHDL-based designs, 
are presented. The proposed approach has been formalized using 
an approach similar to the COCOMO analysis strategy, enhanced 
by a project size prediction methodology based on a VHDL 
function point metric. The proposed design size estimation 
methodology has been validated through a significant benchmark, 
the LEON-1 microprocessor, whose VHDL description is of 
public domain 
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1. INTRODUCTION 
Since last decade, the importance of design reuse is steadily 
growing. New initiatives started, such as the VSIA [1], and third-
part suppliers of IP cells are no longer confined to small market 
segments, but constitute a mature example of business-to-business 
cooperation among companies. Technical managers have to face 
with a new scenario, where the driving forces are time to market 
and flexibility together with the capability to keep under control 
the development costs. The solution of the make-it or buy 
dilemma, requires to take into account several aspects like the 
presence of standards, the structure of EDA design flows, 
direct/indirect costs, internal vs external reuse, etc, with a common 
problem: the necessity to predict the size of a design and to 
estimate the cost-effectiveness according to the number of 
potential reuses. 
The purpose of our ongoing research is threefold: the identification 
of guidelines for VHDL-based designs to simplify their reuse, the 
definition of an analysis methodology providing metrics capturing 
the degree of reusability of already designed VHDL components 
[6] and, finally, the definition of a framework to analyze the 

effectiveness of design reuse as well as to predict the development 
effort and time. This paper addresses: 

• the definition of a financial model to predict the 
development costs and, consequently, the potential 
benefits of reuse; 

• the definition of a metric to predict the size of a project 
starting from an high-level system description; 

The paper is organized as follows, Section 2 present the 
economical model to estimate the development effort. The adopted 
approach resembles the popular COCOMO model [2] developed 
for software projects. Section 3 presents the main impact of reuse 
on the cost, with particular emphasis on the concept of equivalent 
size, introduced to capture the additional overhead originated by 
reuse. Section 4 introduces the strategy we propose to predict the 
project size, which is the relevant one parameter for any planning 
activities. We customized the Function Point (FP) analysis to 
cover the peculiarity of VHDL-based designs and assessed the 
methodology, as reported in Section 5, by considering as an 
example a synthesizable 32-bits SPARC architecture [3]. 
Concluding remarks, and an outline of our present effort, are 
finally reported in section 6. 

2. THE BASIS OF THE FINANCIAL 
MODEL 

In general, to determine the impact of reuse, three models are 
necessary: from scratch associated with a design without reuse; for 
reuse to estimates the cost of reusable components and with reuse 
to consider the cost of systems partially using existing sub-
components. 
In addition to these models, another one associated with the 
potential losses due to the time-to-market (TTM) window, should 
be introduced, together with Return of Investment (ROI) analysis. 
Although the financial analyses of TTM and ROI have been 
considered in our overall work, due to lack of space they are not 
reported in this paper.  
The models conceived for the software development analysis, seem 
to be suitable to investigate the first stages of the typical hardware 
design flows. In particular we considered the COCOMO [2] 
approach, whose main concepts are recalled in this section. 
Prior to any cost trade-off, it is of paramount importance to 
estimate the global development effort (Eff), measured in 
person/month (pm), to realize a given system, and the time T 
(measured in months) to develop the project assuming a full time 

 

 
 
 
 



commitment of a properly composed group of R designers. In 
general, the cost C will be proportional to the effort: 

C = K*Eff 
To evaluate Eff, we adopted the same top-level relation of 
COCOMO 2.0: 

Eff= A* SB 
and similarly for T: 

T = A2 * Eff B2 

so that: 
R = Eff/T 

Where the parameters are the project size S (Klines of code), the 
coefficients A, A2 considering possible multiplicative factors on 
the effort and the scale factors B, B2 accounting for 
economy/diseconomy originated in developing projects of 
different sizes. It is possible to determine the values of the 
parameters, according to the modality of developing the project, 
that is also influenced by the severity of the design constraints and 
the novelty of the application. The typical values are reported in 
table 1, ranging from small and simple projects (organic) to large 
size ones (embedded) requiring the fulfillment of stringent 
constraints and thus, a careful control of the development process. 
An extensive explanation can be found in [2]. 

Table 1. Values of the model parameters. 

Mode A B A2 B2 
Organic 2.4 1.05 2.5 0.38 

Semi-detached 3.0 1.12 2.5 0.35 

Embedded 3.6 1.2 2.5 0.32 
 
To estimate the project size, suitable metrics and reference 

formalism must be considered. Due to its wide diffusion for 
hardware projects, we selected VHDL as the representative 
language to quantify the size (S).  
The modification on S introduced by the presence of reuse and the 
impact of the productivity improvements are the focus of the next 
section, while section four discusses the strategy to estimate S. 

3. DESIGN REUSE MODELS 
The rationale for reusing is that employing an available component 
is less expensive than designing it from scratch. However, its 
integration in the final design environment requires introducing 
some modifications. In general, the cost of reuse will be not simply 
proportional to the entity of the modification. In fact, it is required 
some extra-effort to select and understand the component to be 
integrated, in addition to the adaptation of the module interfaces. 
This section introduces some of the figures of merit and 
modifications to be considered in presence of reuse, with respect 
to the analysis presented in the previous one. Both static aspects 
and dynamic aspect of embedding a component in a project have 
to be considered.  
Concerning the static issues, given a module M to be reused, it is 
possible to define the estimation of an equivalent size (SMes) to be 
reused, starting from the original value of SM (size of the module 

M). For the following three different identified activities, the 
parameters and the final comprehensive expression are reported. 

• Evaluation and selection. The activities of 
Assessment and Assimilation to understand the 
suitability of the module, are captured by the parameter 
AA. It is a value ranging from 0 to 8, related with the 
quality of the available documentation. 

• Undestanding. The parameter CU (Code 
Understanding) is a percentage taking into account the 
increment of the code size due to the understanding of 
the component and the need to adapt the interfaces. 
Code with good documentation and high suitability 
with the project has CU=10% while in the opposite 
case CU can rise up to 50%.  
A second parameter (UNFM) captures the 
unfamiliarity of the designer with the module to be 
reused. The value ranges from 0 (completely familiar) 
to 1 (completely unfamiliar). 

• Modification. The contribution AAF to the 
modification depends on three factors: a) the 
percentage of design to be modified (DM) to suit the 
new environment; b) the percentage of code to be 
modified (CM) for the same reasons of a); and c) the 
percentage of integration required for the modified 
code (IM). IM depends on the effort to embed and test 
the module within the overall system with respect to 
the case of a starting from scratch design of another 
module of similar size.   
AAF = 0.4 DM + 0.3 CM + 0.3 IM 

The value of SMes can be computed through the following 
formulas, in the case of AAF ≤ 0.5 and AAF > 0.5, respectively. 
See [2] for more details. 

SMes=0.01 SM[AA+AAF+(1+0.02 CU) UNFM] 

SMes=0.01 SM[AA+AAF+CU UNFM] 

Using this equivalent project size, it is possible to compute the 
value of Eff and T for the reuse of a module M. 
Some key factors in the success of a product are the costs 
associated with the development cycle and the time to market. An 
adaptive economical model should be based on the above 
estimations of the effort while taking into account the evolution of 
the designer’s productivity. The goal is to predict the design cost 
providing quantitative estimates of the their exponential growing, 
together with a methodology to keep them under control via 
increasing levels of reuse. This dynamic issue cannot be addressed 
in this paper due to lack of space, more details can be found in [4]. 

4. PROJECT SIZE ESTIMATION 
Unfortunately, the planning of a project requires to cope with 
estimated factors, the most important being the project size. Most 
of the experts, in fact, tend to underestimate (from 50% to 150%) 
the size of the project with catastrophic impacts on the design 
management.  
To estimates the size of a VHDL-based project, i.e. the parameter 
S of the main equation of our model (Eff = A * SB), we split it into 



a component related with purely functional aspects and the 
test-benches used for simulation: 

S = Ssystem + Stest-bench 

The first goal is to quantify the effort for coding the system Ssystem 
using a high-level formalism. A popular metric among the 
designers is the Thousand Lines Of Code (KLOC or LOC) of the 
specification. However, many criticism can be raised, since VHDL 
is inherently parallel and the different statements vary dramatically 
is expressiveness and complexity. 
The estimation of LOC requires a well-structured and modular 
project to obtain reliable values. The number of lines can be 
determined analyzing the different contributions emerging from 
the architecture description, which basically are: port (IO), signal, 
concurrent statements, package and library.  
The analysis can be performed trough direct measurements as well 
as by following the proposed high-level estimation strategy, where 
the requirement of achieving a fine grain analysis of the system 
description can be overcome. 

4.1 Direct Analysis 
Processes and Components are the cornerstone of the analysis, we 
assume that in a well structured project, the set of entities 
correspond to a graph where components are nodes and processes 
are leaves. 
The processes typically contain the algorithmic part of the project 
and their sizes are strongly influenced by the number of considered 
signals (not only those of the sensitivity list); the type of data 
(structured, scalar, …) also influences the estimates. From our 
analysis, the estimated trend of LOC for a process is a parabolic 
function of the number of input/output signals, called grade of the 
process (more formally, the sum between the outdegree and the 
indegree of the process graph). Vectors and signals account for 
one, while for the records only the fields effectively manipulated 
by the process are considered. 

 
Figure 1. LOC against grade of a process: interpolation curve. 

The fitting parabolic function, obtained via the least square method 
applied on the data computed on the LEON-1 VHDL description 
[3], is reported in figure 1. 

Concerning the components, the number of lines will be of the 
some order of magnitude of the number of considered signal, listed 
in the component interface. 

4.2 Function Point VHDL 
The second strategy is to indirectly measure the LOC. This 
approach can be applied to the case of the analysis of new projects. 
The original idea is borrowed from the Software Engineering area 
[5], we properly interpreted, extended and tuned the methodology 
to cope with the characteristics of hardware designs. It is based on 
a structured, but not necessarily, detailed view of the project. From 
the description, some functional classes will be identified and 
associated with a weight depending on their complexity. In a 
second phase, these weights are converted in KLOC, that is the 
value chosen to quantify S. 
At a conceptual level, in particular, the representation of 
functionality is not unique. We assume to deal with specifications 
that are complete, consistent, rigorous and feasible.  
The elements to be developed during the project to implement the 
desired functionality are related to the activity of acquisition of 
information, processing (sequential or combinatory), memory 
access, and emitting of information. For the VHDL, each element 
of the specification falls in one of these functional categories: 
primary inputs, primary outputs, basic blocks and internal signals. 
For each of them, a contribution (FPVHDL) is assigned depending 
on the complexity, according to the categorization of table 2. 
Table 2. The weights associated with the functional categories. 

Functional Category Very 
Low

Low Avg High Very 
High 

Ultra 
High 

primary inputs 1 3 4 6 10 14 

primary outputs 2 4 5 7 11 15 

basic blocks 2 8 20 35 52 76 

internal signals 2 8 20 35 52 76 

 

The analysis of an element of the description is composed of two 
steps. Initially, according to table 2, a weight is associated with 
each of the elements composing a given unit. The weights are 
function of characteristics and parameters deriving from the 
specification. Hence, given a functional unit k containing mk 
elements whose weight is wk,i, it is possible to compute: 

  FPk = 

∑
i=1

mk
 wk,i

 mk
  (eq. 1) 

In other terms, the contribution is the average of those of its 
components. Finally, for the entire system, the associated FPVHDL 
becomes: 

 FPVHDL = ∑
i=1

4
 FPk (eq. 2) 

Let us describe in more detail how to analyze the different 
functional categories.  
The Primary Inputs category contains the inputs from the 
specification surroundings the system, both for control (e.g. reset, 



clock) and data acquisition. The complexity (see table 3) depends 
on the: 

• Homogeneity of data constituting the input, i.e. their 
nature (record, vector, scalar) and size. 

• Number of involved blocks, i.e. its contribution to the 
internal communication of the systems after an event 
implying an updating of signals. 

Table 3. Complexity of the Primary Inputs. 

Involved 
Components 

Homogeneity of data 

 1-2 3-4 5-11 12-19 20-44 45-84 84- 

1 VL VL L L A H H 

2 VL L A A H H VH 

3-4 L A A A H H VH 

5-6 L A A H H VH VH 

7- A H H VH VH VH UH 

In a similar way, although with different values with respect to 
those of table 3, the complexity of Primary Outputs is calculated. 
The functional class Internal Signals, involves the homogeneity of 
data and the control information exchanged between components 
and subsystems. The correspondence between the number of 
homogeneous data constituting an internal signal and its 
complexity is depicted in table 4. 

Table 4. Complexity of the Internal Signals. 

Homogeneity of data 
1-3 4-6 7-16 17-35 36-73 74- 

VL L A H VH UH 

Eventually, the Basic Blocks are instances of blocks identifiable 
from the specification. It is important to identify all the 
functionalities of the system to be mapped, during the final VHDL 
coding phase, into entities with component and/or processes. 
Moreover, it has to be considered as a basic block also the 
functionality corresponding to the test-benches. The complexity of 
a basic block depends on the number of homogeneous data 
involved. In particular, if an identified basic block will be realized 
as a component, the estimated number of lines is equal to the 
number of homogeneous data processes by the component; if the 
basic block will be implemented as a process, the value of FP is 
computed by using the eq.1. Table 5 summarizes the level of 
complexity with respect to the number of homogeneous data 
arriving to the process. 
Concerning the relation existing between FPVHDL and LOC, some 
literature studies [5] suggest the coefficients to convert the LOC 
for different languages. 

Table 5. Complexity of Basic Blocks to be implemented as 
processes (leaves of the hierarchy). 

Homogeneous data entering into the basic block 
1-29 30-56 57-85 85-105 105-125 125- 

VL L A H VH UH 
 

For VHDL we found sound the following conversion factors, used 
for local and global estimations. For a single node: 

LOC= 19 * FPVHDL 
If the detail of the lower levels of the hierarchy are not 
accessible (or are unknown), the number of lines of code for 
a given node is estimated by introducing a tuning factor 
(Lev), that is the level where the node is located: 

LOC= 19 * FPVHDL  * Lev 
The value Lev is computed by considering a "levelized" procedure 
where the bottom entity assumes the minimum value “1” while the 
top level assumes the maximum estimated value. Hence, the value 
of LOC is function of the considered level used to estimate the 
global cost of a given module (or sub-module) when its final 
decomposition is unknown but its level is at least predictable. As 
an example, let us consider figure 2 where C can be further 
decomposed in sub-modules. The estimated cost of the entire 
project (in term of LOC) is obtained by summing up the local cost 
of module A, the local cost of module B and the global cost of 
module C, that is: 

LOC=19*(FPVHDL-A + FPVHDL-B + FPVHDL-C * 3) 
 

A (LEVEL 4)

B (LEVEL3)

C (LEVEL 3)

(?) (LEVEL 2)

(?) (LEVEL 2)

(?) (LEVEL 1)

A

C B

Level 1

Level 2

Level 3

Level 4

 
Figure 2. Example of Lev estimation and LOC computation. 

5. Experimental Results 
To provide a reliable validation of our methodology for metric 
estimation, we considered a real-world complex VHDL 
benchmark: the LEON-1 microprocessor. It implements a 32-bits 
SPARC V8 architecture, designed for embedded applications, with 
separate data and instruction caches, 32 bits memory bus, interrupt 



controller, two 24-bits timers, two UARTs, a power down function 
and a watchdog. The block diagram is reported in figure 3, the 
corresponding specification, composed of 20 VHDL files, can be 
found in [3] together with a detailed description of the functional 
behavior. 
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Figure 3. Block diagram of the LEON-1 CPU (gray box). 

Part of this specification files have been used to validate the direct 
estimation of the LOCVHDL and for the tuning of the interpolation 
function reported in figure 1. Concerning the FP analysis, let us 
consider, as an illustrative example, the UART subsystem depicted 
in Figure 4. 
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Figure 4. Block diagram of the UART. 

 
Four primary inputs involve UARTOP while one primary input is 
connected to both subcomponents. All primary outputs but pbi 
have complexity VL; the primary input pbi is composed by 6 
homogeneous data, so that its complexity is L. The Primary 
Outputs include pbo (2 homogeneous data) and uarto (6 
homogeneous data); the complexity is VL for both signals. Internal 
Signals contains r and rin; both are composed by 34 homogeneous 
data so that their complexity is H. Concerning the basic blocks 
UARTOP and REGS, they are at the bottom level of the hierarchy 
and they are implemented as processes; UARTOP involves 45 
homogeneous data (complexity L) while REGS involves 3 
homogeneous data (complexity VL).  See Table 6 for a 
quantitative computation of the UART FP. 
The predictive analysis to estimate S, has been carried out for the 
entire LEON-1 description, whose hierarchical structure is 
depicted in figure 5. 

Table 6 Complexity, FPVHDL and its conversion to LOCVHDL for 
the UART of Figure 3. 

Category Complexity Weight

Primary inputs 1(VL=3)+1(VL)+1(VL)+1(L=3) +1(A)
5  

1.4 

Primary outputs 1(VL=2)+1(VL)
2   

2 

Internal signals 1(H=10)+1H
2   

10 

Basic 
Blocks 

2 block (processes) 
1(L=8) + 1(VL=2) 

10 

 Total number of FPVHDL 23,4 
 

LEON (local cost actual: 219; estimated: 190)

MCORE (local cost actual: 241; estimated: 145)

PERI (local cost 162)

PROC (local cost actual: 166; estimated: 183)

CACHE (local cost actual: 112; estimated: 235)

Dcache (local cost actual: 508; estim.: 376)

Icache (local cost actual: 341; estim.: 399)

Cachemem (local cost actual: 228; estim.: 304)

IU (local cost actual: 2255; estimated: 2390)

REGFILE (local cost actual: 204; estimated: 183)

UART (local cost actual: 395; estimated: 445)

TIMER (local cost actual: 227; estimated: 155 )

IOPORT (local cost actual: 180; estimated: 203)

IRQCTRL (local cost actual: 143; estimated: 161)

MCTRL (local cost actual: 1103; estimated: 912)

DMA (local cost actual: 138; estimated: 275)

RSTGEN (local cost actual: 61; estimated: 57)

MPCIIF (local cost actual: 104, estimated: 106)

PCI (local cost actual: 53, estimated: 91)

PADS (local cost 840) Library

CLOCKGEN (local cost 75) Library
 

Figure 5. Hierarchical decomposition of  LEON-1. 
 



The results and a comparison between estimated and actual values, 
for all the LEON-1 files, are summarized in table 7 (local) and 
table 8 (global). The data in the former one are single actual cost 
(KLOCs) including both BODY and ARCHITECTURE without 
comments and with a single statement per line. 

Table 7. Experimental data obtained analyzing the LEON-1 
description: local costs. 

Architecture Local cost 
(actual) 

Local cost 
(estimated) 

Local 
error 

LEON 219 190 -13% 
MCORE 241 145 -39% 
PROC 166 183 10% 
CACHE 112 235 110% 
Dcache 508 376 38% 
Icache 341 399 15% 
Cachemem 228 304 5% 
IU 2255 2390 0.5% 
REGFILE 204 183 -6% 
PERI 162 125 23% 
UART 395 445 13% 
TIMER 227 155 -31% 
IOPORT 180 203 12% 
IRQCTRL 143 161 12% 
MCTRL 1103 912 17% 
DMA 138 275 99% 
RSTGEN 61 57 6% 
MPCIIF 104 106 2% 
PCI 53 91 71% 
CLOCKGEN 75 114 52% 
TOTAL 6915 7049 2% 
PADS 840 library  

 

Table 8 contains the global estimated costs, expressed in 
LOC, representing the prediction of the number of lines of 
VHDL constituting the portion of the project included in the 
considered module, having the knowledge on the presumed 
hierarchical level but no details on the inner levels.  

Table 8. Experimental data obtained analyzing the LEON-1 
description: global costs. 

 
Architecture 

Level 
(estim.) 

Global cost 
(actual) 

Global cost 
(estim.) 

Global Error

LEON 5 7755 11030 42% 
MCORE 4 6621 6384 3.5% 
PROC 3 3814 3738 2% 
CACHE 2 1189 1530 28.5% 
PERI 3 1107 969 -12% 

 

6. CONCLUDING REMARKS 
The paper addressed the problem modeling the development effort 
and time of hardware projects, to be used possibly to tradeoff 
between designing from scratch or reusing existing IP cells. 
The analysis considered two cross-related aspects of the problem: 

• The definition of a model to estimate the total effort 
and, thus, the required amount of resources. 

• The possibility to predict in a reliable manner, possibly 
at the system-level, the size of the project assuming a 
VHDL-based realization. 

The latter point is particularly important since it is the cornerstone 
of any planning analysis and its accuracy is very critical. 
The methodology has been stressed considering a real large-size 
benchmark, the LEON-1 microprocessor. The obtained results are 
encouraging, since the average accuracy of the local estimates is 
around 20% with a variance of 15%. Note that the summation of 
local costs gives an estimated value with accuracy only around 2%, 
since errors tend to compensate. 
Furthermore, trying to predict the size starting only from the top-
level view of the project, hence with a reasonable uncertain, the 
estimated cost differs from the actual one of less than 40%. 
For the considered LEON-1 system, the obtained effort, 
considering the top-level estimated cost is 255 pm, the 
development time T evaluates 14 months with an equivalent team 
composed of 17 designers. T includes all the front-end activities 
like simulation, testing, documentation, etc. The industrial 
designers we interviewed have considered these values reasonable. 
Work is in progress to integrate the proposed financial analysis 
methodology with the metrics we developed to quantify the level 
of reusability of VHDL specifications, preliminarily described in 
[6]. 
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