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Caching Function Results: Faster Arithmetic by Avoiding
Unnecessary Computation

Stephen E. Richardson (stever@sun.com)

Sun Microsystems Laboratories, Inc.

This paper discussestrivial  computation, where simple operands trivialize poten-
tially complex operations. An example of a trivial operation is integer division,
where the divisor is two; the division becomes a simple shift operation. The paper
also discusses the concept ofredundant computation, where some operation
repeatedly does the same function because it repeatedly sees the same operands.
Experiments on two separate benchmark suites, the SPEC benchmarks and the
Perfect Club, find a surprisingly large amount of trivial and redundant operation.
Various architectural means of exploiting this knowledge to improve computa-
tional efficiency includedetection of trivial operands and theresult cache.
Further experimentation shows significant speedup from these techniques, as
measured on three different styles of machine architecture. The paper includes a
license for free software.

1 Introduction
Computing machines execute tens of millions of operations every second. Consequently, each
individual operation need not be complex. In fact, it should not be surprising that much computa-
tion consists of highly redundant sequences of simple instructions, and that many of these instruc-
tions perform trivial operations, such as multiplication by zero.

This paper explores the trivial and redundant nature of computing. The paper naturally divides in
two sections. The first section explores the degree of triviality in computation, focusing on long-
latency arithmetic operations, and proposes a means for exploiting this triviality to increase exe-
cution speed. The second section discusses the redundant side of computation and, building on the
results of the earlier section, attempts to derive further benefit.

Experimental data shows significant speedup for each of three styles of machine architecture.

This paper is a synthesis of the original SMLI technical report SMLI-TR-1 and a later article,Exploiting Trivial
and Redundant Computation,published inProceedings of the 11th Symposium on Computer Arithmetic, edited
by Swartzlander, Irwin, and Jullien, pages 220–227. The symposium was sponsored by the IEEE Computer Soci-
ety Technical Committee on VLSI and took place in Windsor, Ontario, June 29–July 2, 1993
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2 The trivial nature of computation

What is trivial computation?
Complex operations such as multiplication and division of fixed-width binary numbers involves a
significant amount of computation, such as adds, shifts, and combinatorial logic. However, certain
operands that might be presented to the operation can obviate much of this computation, thus triv-
ializing the operation. Attempts to exploit this phenomenon often involve such techniques as
counting the leading zeroes of an operand. An eight- or sixteen-bit integer divide, for instance,
would take less time to complete than a full 32-bit division.

This paper uses a much stricter definition for triviality, searching for operations so simple that
they could complete in one cycle on even the simplest of machines. Figure 1 displays more pre-
cisely the conditions for triviality.

Why is computation sometimes trivial?
For generality, a scientific algorithm might be designed using three-dimensional rectangular coor-
dinates, although a large class of interesting problems may be two-dimensional. For this class of
problems, approximately one-third of the computation (that concerning the z-component) will
turn out to be operations on zero. For instance, rectangular-to-spherical coordinate transformation
uses the formula

.
For two-dimensional problems, the equation becomes

Heat transfer problems may make heavy use of the equation for specific heat capacity
, where  is a quantity of heat that, applied to a substance of massm and heat

capacityc, changes its temperature by an amount .

The equation is often set up such that for the most interesting substance, water, the value ofc is
1.0. A program for heat transfer, used to calculate cooling by water, would thus wind up doing a
fair amount of multiplication by 1.0.

Is it possible that a significant amount of computation involves complex operations on trivial
data? What about non-scientific programs? Take the example of a typesetting algorithm. To jus-
tify its margins, such a program must calculate the width of each word within a line. Involved in
this computation might be the width of each character in per-point units, its point size, and a mag-
nification factor:

 operation  conditions for triviality

 multiply (x or y) = (0, 1, or -1)

 division  (x = y, x = -y, or x = 0)

 square root  (x = 0 or x = 1)

Figure 1: Conditions for triviality.

x y×

x y÷

x

r x2 y2 z2+ +=

r x2 y2 0.02+ +=

Q∆ cm T∆= Q∆
T∆

charwidth pointsize magnificationfactor××



4

Typically, the magnification factor will be 1.0 or 2.0, resulting in a significant amount of trivial
computation.

How can trivial computation speed program execution?
If a sufficient amount of computation were indeed trivial, some obvious changes in the style of
computation could make programs run faster. Consider the following algorithm for multiplying
two operandsa andb to yield a result c:

OVERHEAD:  if (  == 1.0 orb == 0.0) then
;

else if (  == 1.0 or a == 0.0) then
;

else
goto MULTIPLY;

goto END;
MULTIPLY: c = mult(a, b);
END:

A trivial multiply—multiplication by 1.0, 0.0, or -1.0—will exit after passing through only the
OVERHEAD portion of the algorithm. All other multiply operations will have the extra cost of
the OVERHEAD portion added to the regular MULTIPLY portion of the algorithm. Because the
conditions for triviality are so specific, a scheme for detecting them can add efficiency to generic
“early-out” schemes requiring a “count-leading-zeroes” and/or a “count-leading-ones” type of
operation.

Provided that the OVERHEAD cost is smaller than the MULTIPLY cost, a sufficiently large ratio
of trivial multiply operations to nontrivial multiply operations will justify the cost of adding the
OVERHEAD.

Although not new, the idea of exploiting trivial computation has not seen wide dissemination, due
in large part to a lack of knowledge concerning its usefulness in typical programs. This paper pre-
sents real data on the degree to which real programs contain trivial computation, and the potential
benefit to be derived by current processors.

How much trivial computation in real programs?
A tool calledshade [Cmelik92] can help determine the ratio of trivial to nontrivial operations in
some benchmarks of current interest. Shade analyzes programs on an instruction-by-instruction
basis as they execute. Each time shade sees a targeted operation, it can note whether the operands
render the operation trivial. The table in Figure 1 shows the target operations, along with the con-
ditions for triviality. The experiment willnot detect cases where one or more of the operands is
constant; the compiler optimizes these away, as shown in Figure 2.

The data to be presented comes from two different benchmark suites. The first, known as the
SPEC floating-point benchmark suite, is a group of large FORTRAN and C programs. The sec-
ond, called the Perfect Club, consists of a set of statically large and dynamically very large
numeric FORTRAN programs. Appendices A and B provide a more complete description of the
SPEC and Perfect Club benchmarks. The benchmarks NA, SM, and TF were omitted from the
Perfect Club results because of a difficulty in attaining accurate results.

a
c sign a( ) b×=

b
c sign b( ) a×=
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Figure 3 shows, for each of the SPEC benchmarks, what percentage of targeted operations were
found by the shade analyzer to be trivial. Figure 4 shows data for the Perfect Club benchmarks.

The percentage of trivial operations per program ranged from near zero to as high as 7.3 percent
for the Perfect Club benchmark “SD.” The relatively large percentage of trivial operations in SD
results from repetitive matrix multiplication of sparse arrays such as diagonal transformation

Figure 2: Trivial multiplication in FORTRAN.

Figure 3: Trivial operations in SPEC benchmarks.

Y = X * 1.0
DO 200 J=0,200
A(J) = X * J

200 CONTINUE

Not a trivial multiply;
compiler will optimize to “Y = X.”

Trivial when J==0 or J==1.

013.spice2g6

015.doduc

034.m
dljdp2

039.w
ave5

047.tom
catv

048.ora

052.alvinn

056.ear

077.m
dljsp2

078.sw
m

256

089.su2cor

090.hydro2d

093.nasa7

094.fpppp

0

2

4

6

8

10

12

14

16

18

20

22

24

26

Pe
rc

en
t o

f a
ll 

in
st

ru
ct

io
ns

 e
xe

cu
te

d

as percent of all instructions

targetted ops
trivial ops



6

matrices. By far, most of the trivial operations were single- and double-precision floating-point
multiply operations.

The speedup achievable from detecting trivial operations can vary, depending on the cost of each
operation in a given architecture. The next section explores this cost versus speedup for various
machine styles.

How much speedup?
The table in Figure 5 gives sample times for certain long-latency operations on various implemen-
tations. Most of the numbers were derived from data books and other literature [Grohoski90, Ols-
son90, Motorola88, NEC91, Intel88, Intel89]. Experimental data provided numbers for the
SPARCStation 2 (SS2) and the HP9000/720. The SPARCStation 2 contained a Cypress CYC602
integer unit and a Texas Instruments TMS390C602A floating-point unit. Numbers in the table do
not reflect anomalously long latencies; for example, the HP machine required over three hundred
cycles to compute single- and double-precision floating-point divides of the form 0÷x.

Now posit a set of three test machines: the Aggressor, an aggressive design with latencies for the
targeted operations comparable to the shortest of those in Figure 5; the Normol, with somewhat
intermediate values for the latencies; and the Wemp, a cost-effective machine with very long-

Figure 4: Trivial operations in Perfect Club benchmarks.
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latency operations. The table in Figure 6 gives characteristics for each machine. Assume that non-
targeted operations have no excess latency and execute at the rate of one per cycle.

The table in Figure 7 shows the overall performance improvement for each test machine resulting
from a hardware implementation of a trivial-operand detect scheme. Each performance improve-
ment number represents the geometric average of the improvement of the individual benchmarks
in the set. The table assumes that detection of trivial operands, and the subsequent emission of the
appropriate result, is a simple operation that should take no more than a single cycle on even the
crudest of implementations. As one might expect, the long latency machine “Wemp” showed
greatest improvement: 10.4 percent on the SPEC benchmark set and 22.0 percent on the Perfect
Club. Even the short-latency Aggressor benefitted, although to a lesser degree: 2.1 percent and
4.4 percent, respectively, for the two sets of benchmarks.

A subsequent study of operand distributions shows certain missed opportunities [Richardson93a].
Specifically, the study shows a significant number of floating-point divisions of the form
and . Aside from a few trivial operands such as 1 and 0, however, the most common oper-

 integer  floating-point

 multiply  divide  square-root
mul  div  sp  dp  sp  dp  sp  dp

 RS/6000  5  19  2  2  17  17  *  *

 HP720  12  20  3  3  10  12  120  120

 SS2  20  30  4  6  16  26  26  40

 MC88100  4  38  6  7  30  59 * *

 VR4000  10  69  7  8  23  36  54  112

 i486  13  24  14  14  73  73  85  85

 80960KB  18  37  20  36  35  77  104  104

Figure 5: Cycle times for long-latency operations, on various systems.

 integer  floating-point

 multiply  divide  square-root
 mul  div  sp  dp  sp  dp  sp  dp

 Aggressor  4  18  2  2  10  10  25  40

 Normol  10  24  4  5  15  20  50  80

 Wemp  20  70  20  40  75  80  120  120

Figure 6: Cycle times for long-latency operations, on test machines

x 1.0÷
x 2.0÷
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ands for a given operation tend to differ from program to program. For example, the most com-
mon multiplicative operands in the SPEC benchmarkalvinn are 0.99 and 0.01, respectively.

Now that we have seen some of the benefit to be derived from recognizing the trivial nature of
computation, let’s turn our attention to the concept of redundant computation. To what degree is
computation redundant? Can we use the redundant nature of computation to gain additional
speedup?

3 The redundant nature of computation
Computation typically involves the input of an initial data set, the transformation of these data
through one or more states, and convergence on a final data output. Sometimes the data mimics
physical quantities, such as time, distance, or voltage; other times the data consists of more
abstract items, such as lexical tokens or character strings.

Such input data are by nature redundant. Take the example of a simulator for CMOS VLSI cir-
cuits, or a compiler for FORTRAN. Think how many nodes in the circuit will begin at either 0.0
or 5.0 volts. Think how often the compiler will process the keywords “FOR” or “CONTINUE,”
or the identifier name “I,” as compared to the identifier name “XYZ123.”

Similar data tends to flow through similar states. Data read as “inches” and “seconds” may be
converted, one datum at a time, to “centimeters” and “hours.” This involves redundant multiplica-
tion by the same conversion constants. Programs often run multiple times with the same or very
similar inputs, such as the typesetter that runs over and over on a progressively refined document.

Acknowledgment of this redundant nature can speed the task of computation in many ways.
Cache memory, for instance, works so well because the same areas of memory get accessed over
and over during a sufficiently short time period. As another example, incremental compilation
takes advantage of the fact that programs in development seldom vary much from one run to the
next [Quong91, Burke90].

3.1 Memoization
The technique ofmemoization, or tabulation, takes advantage of the redundant nature of computa-
tion. It allows a computer program to run faster by trading execution time for increased memory
storage. Once calculated, the result of a function is stored in a table called a memoization cache.
The cache traditionally exists as a software data structure. Cache lookup then replaces later calls
to the function [Bentley82, Harbison82, Abelson85, Hughes85]. Tabulation can be extended to

 Machine
 Benchmark Suite

 Spec92  Perfect Club

 Aggressor  2.1%  4.4%

 Normol  4.0%  8.0%

 Wemp  10.4%  22.0%

Figure 7: Geometric average of overall program speedup as a result of trivial-operation detect.
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apply not only to functions, but also statements, groups of statements, or any given region of a
program that has limited side effects and a high degree of recurrence.

Memoization by Region: Ackerman’s Function
Figure 8 shows the dramatic improvement possible with memoization in a functional language
program. By caching calls to the recursive Ackerman’s function, and replacing subsequent calls
with table lookup, we achieve real speedup as much as 1,473 times. Appendix C shows the modi-
fied Ackerman’s function. Can the same kind of modification achieve speedup in a real, non-func-
tional-language type program?

A SPECmark: doduc
The table of Figure 9 summarizes actual runtime improvement found by applying memoization to
the SPECmark “doduc.” This experiment cached all calls to the function EWV, which in turn
includes two calls to function SI and one to EXP. The table presents results for various configura-
tions of the lookup cache. In this experiment, we look only at direct-mapped memoization caches
having from 64 to 32,768 entries. A hash on the EWV function parameters formed an appropriate
index into the cache. The unhashed parameters are then used as the “tags.”

As shown in the partial doduc profile of Figure 10, each call to EWV (which, as noted earlier,
calls SI twice and EXP once) results in the execution of  instructions.

Figure 8: Optimizing Ackerman’s function using memoization.
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Memoization calls CS1 before each call to EWV. CS1 searches the cache. A cache hit avoids the
call to EWV. If the cache misses, we must call EWV and then call CI1 to insert the new value into
the cache.

Inspection of theafterprofile shows

Cost of hit =  30 instructions
Cost of miss = (30 + 415 + 17) =  462 instructions.

Further, the profile shows that this particular implementation hit (146,166 - 81,240) = 64,926
times and missed 81,240 times. Instruction overhead from EWV was thus reduced

before:  146,166× 30  =  60,658,890
after:  (64,926× 30) + (81,240× 462)  =  39,480,660

Cache size  hits  misses  unopt  opt  improvement

 64x1  45200  100900  49.64 sec  49.00 sec  1.3%

 256x1  58300  87800  48.56 sec  47.76 sec  1.7%

 1024x1  63100  82900  49.68 sec  49.40 sec  0.6%

 4096x1  64400  81600  51.56 sec  48.50 sec  6.3%

 16384x1  64800  81200  47.48 sec  46.60 sec  1.9%

 Average  49.59 sec  48.41 sec  2.8%

Figure 9: Measured memo improvement for doduc.

Before:
function calls instrs/call instrs %

 SI 292,332 149 43,557,468 14.75
POW 78,505 193 15,151,465  5.13

EXP 146,166 74 10,816,284 3.68
SQRT 87,213 120 10,465,560 3.53

EWV 146,166 43 6,285,138 2.12

(Total) 295,304,867 100.00

After:
function calls instrs/call instrs %

SI 162,480 151 24,534,480 8.75
POW 78,505 193 15,151,465 5.40

SQRT 87,213 120 10,465,560 3.73

EXP 81,240 74 6,011,760 2.14
CS1 146,166 30 4,384,980 1.56
EWV 81,240 43 3,493,320 1.24
CI1 81,240 17 1,381,080 0.49

(Total) 280,394,057 100.00

Items inblue boldfacedirectly relate to calls to EWV. Other items are included as a matter of interest.

Figure 10: Execution profiles for doduc, before and after memoization.
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by 35 percent, and overall instruction count reduced

 = 5 percent.

If cache penalty could be made smaller, perhaps by implementing the cache in hardware, speedup
would approach

To summarize, performing memoization on a single procedure (EWV) in doduc can potentially
yield near 8.8 percent reduction in dynamic instruction count. A simple software scheme yields
about 5 percent. As a final exercise, note that a 50 percent hit rate on the functions POW and
SQRT would yield further reduction of as much as 5 percent more.

Tomcatv
Profiling reveals that each of the following computations represents approximately 10 percent of
dynamic instructions executed for the SPECmarktomcatv.

Value tracing shows that, of 65,031 computations, only 769 unique operand pairs are presented to
each expression. Thus, a perfect cache of sufficient size with no overhead should reduce the
dynamic instruction count by approximately 20 percent.

Other SPECmarks
Other SPECmarks were not scrutinized as closely, but none seem so obviously amenable to
memoization as doduc and tomcatv.

How to memoize regions automatically
Efficient application of this technique involves these steps:

• Find a much-used statement of the program, using profile or other technique;

• find largest enclosing region having limited side-effects;

• use value tracing to verify that significant recurrence actually does occur.

As an example of this procedure, inspection of Figure 10 showed that the most time-consuming
function indoducwas SI. A compiler with access to a callgraph would find that SI is called only
by procedure EWV. Thus, we cache EWV.

3.2 Result Caching
A special hardware cache could perform tabulation without the need for compiler or programmer
intervention. Access to thisresult cache could be initiated at the same time as, for instance, a
floating point divide operation. If the cache access results in a hit, the answer appears quickly and
the floating point operation can be halted. On a miss, the divide unit can write the result into the
cache at the same time as it sends the result on to the next pipeline stage.

In the experiments described here, we look at direct-mapped result caches for the set of targeted
operations described earlier in Section 2. As before, benchmarks from the SPEC floating-point
and Perfect Club suites form the test case. A filter detects and handles trivial operations, sending

1
295 304 867, ,
280 394 057, ,( )−

original overhead( ) hits
hits misses×× 20%( ) 64 926,

146 166,× 8.8%= =

A 0.25 XY2 YY 2+( )×=
B 0.25 XY2 YY 2+( )×=
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only non-trivial operations on to the result cache. Appendix C provides further details concerning
the experimental setup.

Figures 11 and 12 show the percentage of all instructions captured by each of a variety of result
caches. The bottom bar for each benchmark tells what percentage of instructions were trivial tar-

geted operations. This portion of the graph represents the same information we saw earlier in Sec-
tion 2. Successively taller bars show the number of instructions that hit in successively larger
direct-mapped result caches. In the graph, “256x1” means the cache contains 256 direct-mapped
entries.

Figure 11: Percent of hits in result cache—SPEC.
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Figure 11, for instance, shows that of all instructions executed by the SPEC benchmark 048.ora,
0.5 percent were trivial targeted operations—that is, trivial multiplies, divides, and square roots as
defined in the table of Figure 1. An additional 6.3 percent of all instructions executed were tar-
geted operations that would hit in a direct-mapped sixteen-entry result cache, for a cumulative
total of 6.8 percent. Going from sixteen to sixty-four entries captures another 0.1 percent, for a
total of 6.9 percent. And a 16K cache with trivial-operand detect effectively removes the latency
from 22.7 percent of all instructions executed—a significant accomplishment, considering that
targeted operations comprise only 26.7 percent of all instructions.

The SPEC benchmarks in Figure 8 show a wide range of hit rates, from near zero for themdlj pro-
grams to over 20 percent for the floating-point intensiveora. The Perfect Club benchmarks in
Figure 12 show similar variation over a smaller range, from less than one percent forLW andWS
to over seven percent forSD. Note thatTI, while not gaining any advantage from trivial opera-
tions, responds well to the result cache.

While the detection of trivial operands seemed primarily to benefit multiplication, the result cache
also captures a fair number of divides and square roots. In the application 048.ora, for instance,
the largest result cache captured 81.9 percent of all double-precision square root operations. As
seen earlier in Figure 5, this advantage gets multiplied by 40x to 120x, depending on the imple-

Figure 12: Percent of hits in result cache—Perfect Club.
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mentation of the square root function. This, along with the other operations captured, results in
enormous speedup.

Figure 13 gives geometric means for whole-suite improvements on each of the Aggressor, Nor-
mol, and Wemp test machines. Speedup corresponds to reduction in program run time, ignoring

memory and system effects. Improvements from a given cache show remarkable similarity across
benchmark suites. With caches ranging from 16 to 16K entries, the Aggressor achieved a 4 to 13
percent speedup, the Normol got 7 to 21 percent, and the Wemp a 17 to 48 percent speedup. The
chart shows a fairly constant improvement of about 2x with each 4x increase in cache size, indi-
cating that aknee has not yet developed; still larger caches would probably get still more
improvement.

4 Conclusions
Experiments indicate a high percentage oftrivial  operations. Algorithms for complex arithmetic
functions should always provide an early-out for such cases. For certain programs studied, trivial

Figure 13: Machine speedups using result cache.
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operations accounted for as much as 67 percent of targeted operations. Fast evaluation of these
operations yielded significant speedup in execution time, as seen in Figure 7.

Figure 13 showed that memoization of individual instructions via result cache provides further
benefit, yielding more and more speedup as the result cache size increases.

Both schemes showed best results in floating-point-intensive programs, probably because most of
the targeted operations were long-latency floating-point functions. Obviously, any long-latency
instruction could become a candidate for speedup using these shortcut techniques.

The simplicity of the techniques presented make them particularly attractive alternatives to
expensive complex-operation support in low-cost designs. The long-latencyWemp composite
machine showed speedups of up to 43.1 percent on the set of SPEC benchmarks studied, and 47.8
percent on the Perfect Club set. Machines with shorter latency also benefitted, improving by ten to
twenty percent.

5 Future work
The conditions for triviality captured few divide or square root operations. Closer observation of
these functions might reveal a high frequency of some simple operand, such as divide-by-two,
that has not yet been considered.

Different hashing algorithms for producing an index given an operand or pair of operands might
raise the hit rate of the result cache. Furthermore, a cache associativity greater than one might
prove useful.

A persistent result cache would exhibit “warm-start” characteristics across successive iterations
of the same program. To what extent would this improve speedup?

The result cache presented here targeted only multiply, divide and square root operations. The
scope could be expanded to contain others. Furthermore, the cache could support general
memoization through use of specialized “check-result-cache” instructions.

Finally, means could be explored for gaining optimum hit rate per area of result cache. Such
means might include data compression or limiting the type, size, or precision of operand consid-
ered for inclusion in the cache.
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Appendix A: SPEC benchmarks
The SPEC (Systems Performance Evaluation Cooperative) benchmarks consist of twenty CPU-intensive pro-
grams variously written in FORTRAN and C [Weiss90]. The suite is broken up into six integer benchmarks
and fourteen floating-point benchmarks. Because this paper focussed mostly on long-latency floating-point
operations, it used only the floating-point portion of the suite.

Benchmark Description
013.spice famous circuit simulation program;
015.doduc Monte Carlo simulation of a portion of a nuclear reactor;
034.mdljdp2 simulates the interaction of 500 atoms;
039.wave5 simulation of particles in a plasma;
047.tomcatv vectorized version of a mesh generation program;
048.ora traces rays through spheres and planes;
052.alvinn trains a neural network to drive a vehicle;
056.ear simulates sound in the human cochlea;
077.mdljsp2 single-precision version of mdljdp2;
078.swm256 solves a system of shallow water equations;
089.su2cor computes masses of elementary particles;
090.hydro2d uses Navier Stokes equations to compute galactic jets;
093.nasa7 heavily floating-point-intensive FORTRAN kernels;
094.fpppp computes a “two electron integral derivative” for a given

number of atoms.

Appendix B: Perfect Club Benchmarks
The Perfect Club is a set of computationally-intense, highly numeric FORTRAN programs for benchmarking
scientific computers [Cybenko90]. Each of the thirteen programs is designated by a unique combination of two
alphabetic characters. The benchmarks are described below. The benchmarks average about 129,000 characters
of FORTRAN source code each.

Size in Bytes
Name Description Source Input Data
 AP A mesoscale model for air pollution. 204307 9639
 CS The well-known circuit simulatorspice. 579496 5292
 LG Simulation of the gauge theory of the strong interaction that binds 64380 67

quarksand gluons into hadrons.
 LW A molecular dynamics program for the simulation of liquid water. 38796 50060
 MT Determines the course of a set of an unknown number of targets, 128753 137408

such as missiles or rocket boosters.
 NA1 A molecular dynamics package for the simulation of nucleic acids. 125540 2495739
 OC A two-dimensional ocean simulation. 134296 0
 SD A structural dynamics benchmark, solves for displacements and stresses, 259473 3501

along with  velocities and accelerations at each time step.
 SM1 A seismic migration code used to investigate the geological structure 79363 76551

of the earth.
 SR A two dimensional fluid flow solver. 131577 184
 TF1 Analysis of a transonic inviscid flow past an airfoil. 61815 2013
 TI A kernel simulating a two-electron integral transformation. 10852 0
 WS A global spectral model to simulate atmospheric flow. 122084 4794767

1 The benchmarks NA, SM, and TF were omitted from this paper because of a difficulty in attaining accurate results.
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Appendix C: Memoizing Ackerman

Appendix D: Details of Result-Cache Experiment
We simulated only direct-mapped caches. More complex strategies, such as multiple set-associative,
are of course possible. Discussion of the algorithms used to produce cache indices will use the fol-
lowing symbols for bit-level operations:

+ = or >> = right-shift

For simplicity’s sake, the algorithm converts all operands to double-precision before generating a
cache index. A more time- and space-efficient algorithm would calculate a separate hash function
depending on the operand type. The sign, exponent, and the most significant 20 bits of each double-
precision operandx0 andy0 were combined using an exclusive-or operation; the two resulting num-
bersx2 andy2 were then exclusive-or’ed together. The appropriately-masked result of this operation
formed the cache indexi. For the unary square-root operation, the algorithm always set the unused
operand to 0.0.

Each cache line included the two 64-bit operands as tags, as well as the 64-bit result and an 8-bit field
to designate the operation. Again, the experiment used this space-expensive layout for simplicity
only. Single-precision or unary operations do not need so much room in the cache line.

Ack(int x, int y) {
int A;
if (x == 0) A = y + 1;
else if (y == 0) A = Ack(x-1, 1);
else A = Ack(x-1, Ack(x, y-1));
return A;

}

Ack(int x, int y) {
int A;
if (cachesearch(x, y, *A)) return A;
else cacheinsert(x, y, Ack0(x, y);

}
Ack0(int x, int y) {

int A;
if (x == 0) A = y + 1;
else if (y == 0) A = Ack(x-1, 1);
else A = Ack(x-1, Ack(x, y-1));
return A;

}
Unmemoized Memoized

i  cache size = 2i  mask

4  16  F16

6  64  3F16

8  256  FF16

10  1,024  3FF16

12  4,096  FFF16

14  16,384  3FFF16

= xor⊗
= and⋅ ¬ not=

hashx2 y2 i m, , ,( ) x2 y2⊗( ) m i∀ 4 6 8 10 12 14}, , , , ,{∈,⋅=
x2 x1>>31( ) x1>>20( ) x1>> 20 i−( )( )⊗ ⊗=

x1 x1>>32( ) FFFF FFFF16⋅=

m 2i 1−=
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Shade: Free software
Sun Microsystems, Inc. (“Sun”) has developed a set of software tools and related documents referred to as the
SPARC Performance Analysis Tools (“the Software”).

The Software allows an existing SPARC program to be monitored to collect dynamic instruction characteristics. The
Software can be used to collect standard instruction-level performance analysis tools (such as cache or pipeline simu-
lators). The method used provides significant speedups over traditional trace and simulation based approaches.

The Software is experimental in nature and is provided as is with no warranties of any kind, expressed or implied,
including without limitation, the warranties of merchantability or fitness for a particular purpose.

Sun is willing to license the Software in binary and limited source form solely for the Licensee’s internal use. This
Software may not be re-distributed by the Licensee in either source or binary form.

In no event will Sun be liable for any indirect, incidental, special or consequential damages including, without limita-
tion, loss of revenues, profits, data or use incurred by the Licensee or any third party, even if Sun has been advised of
the possibility of such damages. Sun’s maximum liability for damages shall not exceed the amount of fees paid by the
Licensee for the Software.

This Software is not supported by Sun, except that Sun may answer limited inquiries and may, in its sole discretion,
respond to requests for bug fixes. The Sun contact for such inquiries or requests is Bob Cmelik.

To receive a copy of the Software, please return an executed (i.e. signed) copy of this license to
the address listed below, and the Software will be mailed to you. The license portion of the docu-
ment must be included in your request!

Bob Cmelik
Sun Microsystems Laboratories, Inc.
2550 Garcia Avenue, MS 29-225
Mountain View, CA 94043
(415) 336-1709
rfc@sun.com

The foregoing is agreed to and accepted.

Signature:_______________________________________

Name:_______________________________________

Title:_______________________________________

Institution/Company:_______________________________________

Address:_______________________________________

_______________________________________

_______________________________________

E-mail:_______________________________________

Telephone:_______________________________________

Date:_______________________________________
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