
Optimally Profiling and Tracing

THOMAS BALL and JAMES R. LARUS

University of Wisconsin, Madison

Programs

This paper describes algorithms for inserting monitoring code to profile and trace programs.

These algorithms greatly reduce the cost of measuring programs with respect to the commonly

used technique of placing code in each basic block. Program profiling counts the number of times

each basic block in a program executes. Instruction tracing records the sequence of basic blocks

traversed in a program execution. The algorithms optimize the placement of counting/tracing

code with respect to the expected or measured frequency of each block or edge in a program’s

control-flow graph. We have implemented the algorithms in a profiling/tracing tool, and they

substantially reduce the overhead of profiling and tracing.

We also define and study the hierarchy of profiling problems. These problems have two

dimensions: what is profiled (i.e., vertices (basic blocks) or edges in a control-flow graph) and

where the instrumentation code is placed (in blocks or along edges). We compare the optimal

solutions to the profiling problems and describe a new profiling problem: basic-block profiling

with edge counters. This problem is important because an optimal solution to any other profiling

problem (for a given control-flow graph) is never better than an optimal solution to this problem.

Unfortunately, finding an optimal placement of edge counters for vertex profiling appears to be a

hard problem in general. However, our work shows that edge profiling with edge counters works

well in practice because it is simple and efficient and finds optimal counter placements in most

cases. Furthermore, it yields more information than a vertex profile. Tracing also benefits from

placing instrumentation code along edges rather than on vertices.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of

Systems—measurement techniques; D.2.2 [Software Engineering]: Tools and Techniques—

programmer workbench; D.2.5 [Software Engineering]: Testing and Debugging-diagnostics;

tracing

General Terms: Algorithms, Measurement

Additional Key Words and Phrases: Control-flow graph, instruction tracing,

profiling

instrumentation,

A preliminary version of this paper appeared in the 19th Symposium on Principles of Program-

ming Languages (Jan. 19–22, 1992) [Ball and Larus 1992]. This work was supported in part by

the National Science Foundation under grants CCR-8958530 and CCR-9101O35, and by the

Wisconsin Alumni Research Foundation. Some computer resources were obtained through

Digital Equipment Corporation External Research Grant 48428.

Authors’ current address: T. Ball, AT & T, 1000 East Warrenville Road, P.O. Box 3013, Naperville,

IL 60566-7013; J. R. Larus, Computer Sciences Department, University of Wisconsin, Madison,

WI 53706.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by Permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1994 ACM 0164-0925/94/0700-1319 $03.50

ACM Transactions on Programmmg Languages and Systems, Vol 16. No. 4, July 1994, Pages 1319-1360

1320 . T. Ball and J. R. Larus

1. INTRODUCTION

A well-known technique for recording program behavior and measuring

program performance is to insert code into a program and execute the

modified program. This paper discusses how to insert monitoring code either

to profile or trace programs. Program profiling counts the number of times

that each basic block or control-flow edge in a program executes. It is widely

used to measure instruction set utilization, to identify program bottlenecks,

and to estimate program execution times for code optimization [Cmelik et al.

1991; Fisher et al. 1984; Graham et al. 1983; McFarling 1991; Morris 1991;

Pettis and Hanson 1990; Sarkar 1989]. Instruction tracing records the se-

quence of basic blocks traversed in a program execution. It is the basis for

trace-driven architectural simulation and analysis and is also used in trace-

driven debugging [Choi et al. 1991; Larus 1990; Smith 1982]. Both techniques

have been implemented in a wide variety of systems.

In this paper we describe algorithms for placing profiling and tracing code

that greatly reduce the cost of measuring programs, compared to previously

implemented approaches. The algorithms reduce measurement overhead in

two ways: by inserting less instrumentation code and by placing the code

where it is less likely to be executed. The algorithms have been implemented

in a widely distributed profiling\ tracing tool called qpt [Larus 1993], which

instruments executable files and performs very well in practice.

As described in Section 7, there has been considerable work on efficiently

profiling and tracing programs. Three factors significantly distinguish our

work from previous work. First, we considered the theoretic and algorithmic

underpinnings of program profiling and tracing. Second, unlike most previous

work, we implemented the algorithms and experimented with different in-

strumentation strategies on a collection of real programs. This experience

exposed deficiencies in previous algorithms and led to extensions that make

these algorithms robust enough for practical use. Third, we implemented and

compared several strategies for profiling and tracing. These approaches can

be categorized as to whether they measure basic-block or control-flow edge

frequency and whether they place instrumentation code in basic blocks or

along control-flow edges. This categorization helps to relate the efficiency of

various approaches. Through this categorization, we identified a new problem

that has not been previously considered: basic-block profiling with edge

counters. This paper characterizes this new problem and compares it to

existing approaches.

The algorithms in this paper produce an exact basic-block profile or trace,

contrasted with a statistical tool such as the UNIX1 prof command, which

samples the program counter during program execution. The algorithms

consist of a preexecution phase and a postexecution phase. The first phase

selects points in a program at which to insert profiling or tracing code.

Instrumentation code is inserted at these points, producing an instrumented

version of the program. The algorithms for inserting instrumentation for

] UNIX is a re~stercd trademark of AT & T Bell Laboratories.

ACM Transactl.ns on Programmmg Languages and Systems, Vol. 16, No 4, July 1994

Optimally Profiling and Tracing Programs . 1321

profiling and tracing are nearly identical. Both compute a spanning tree of

the program’s control-flow graph and place the instrumentation code on

control-flow graph edges not in the spanning tree. In profiling, the instrumen-

tation code increments a counter that records how many times an edge

executes. In tracing, the instrumentation code writes a unique token (wit-

ness) to a trace file. Placement of instrumentation code can be optimized with

respect to a weighting that assigns frequencies to edges or vertices. Weighi-

ngs can be obtained either by empirical measurement (profiling) or by

estimation. After the instrumented program executes, the second phase uses

the results collected during execution and the program’s control-flow graph to

derive a complete profile or trace.

The major contributions of this paper are as follows:

—We enumerate the space of profiling problems based on what is profiled

and where profiling code is placed. A uertex profile counts the number of

executions of each vertex (basic block) in a control-flow graph (CFG). An

edge profile counts the number of times each control-flow edge executes. An

edge profile determines a vertex profile, but the converse does not always

hold. Knuth has published efficient algorithms for finding the minimum

number of vertex counters necessary and sufficient for vertex profiling

[Knuth and Stevenson 1973], denoted by Vprof(Vcnt), and the minimum

number of edge counters for edge profiling [Knuth 1973], denoted by

Eprof(Ecnt). We consider the new problem of finding a set of edge counters

for vertex profiling, Vprof(Ecnt), and characterize when a set of instru-

mented edges is necessary and sufficient for vertex profiling.

—We relate the optimal solutions to three profiling problems, Vprof(Vcnt),

Eprof(Ecnt), and Vprof(Ecnt), and compare their run-time overhead in

practice. We show that, for a given CFG and weighting, an optimal solution

to vprof(Vcnt) or Eprof(Ecnt) is never better than an optimal solution to

Vprof(Ecnt). Unfortunately, finding an optimal solution to vprof(E@J

seems to be a hard problem in general. We believe the problem is NP-

complete, but do not have a proof as of yet. However, we show that, for a

large class of structured CFGS, an optimal solution to Eprof(Ecnt) is an

optimal solution to Vprof(Ecnt). Furthermore, we show that Eprof(Ecnt)

has lower overhead than Vprof(Vcnt) in practice.

—We show that, for both profiling and tracing, placing instrumentation code

on edges is better than placing it on vertices. Intuitively, this is because

there are more edges than vertices in the CFG. Instrumenting edges

provides more opportunities to place instrumentation code in areas of low

execution frequency.

—We give a simple heuristic for estimating execution frequencies (based on

analysis of the CFG) that accurately predicts areas of low execution

frequency at which to place instrumentation code.

—We show that any solution to a profiling problem is sufficient to solve the

tracing problem. However, such a solution is not necessarily optimal.

Ramamoorthy et al. [1975] gave a necessary and sufficient condition for

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4. July 1994.

1322 . T. Ball and J. R. Larus

when a set of edges solves the tracing problem for single-procedure pro-

grams. However, this condition does not work for multiprocedure pro-

grams. We reformulate this condition in a more intuitive manner and show

how it can be extended to apply to multiprocedure programs.

Our work shows that Knuth’s algorithm for l?pro~(llcnt) profiling is the

algorithm of choice for profiling: It is simple and efficient, finds optimal

counter placements in most cases, and yields more information than a vertex

profile (by measuring edge frequency as well as vertex frequency). We show

how to extend this algorithm to handle early procedure termination caused

by exceptions.

We emphasize that the algorithms presented here are based solely on

control-flow information. They are applicable to any CFG. The graphs need

not be reducible or have other properties that would preclude the analysis of

some programs. The algorithms do not make use of other semantic informa-

tion that could be derived from the program text (e.g., via constant propaga-

tion or induction variable analysis). Such information could be used to reduce

the amount of instrumentation code needed to profile or trace a program.

The remainder of this paper is organized as follows: Section 2 provides

background material on CFGS, weighings, and spanning trees. Section 3

shows how to profile programs efficiently, and Section 4 describes how to

trace programs efficiently. Section 5 presents our heuristic weighting algo-

rithm. Section 6 presents performance results. Section 7 reviews related work

on profiling, tracing, and heuristics for minimizing instrumentation overhead

and estimating execution frequency. Section 8 concludes this paper.

2. BACKGROUND

This paper presents algorithms for instrumenting programs to record infor-

mation about their execution-time behavior. These algorithms use the in-

traprocedural control-flow structure of programs to determine where to place

instrumentation code. The programs under consideration are assumed to

have been written in an imperative language with procedures, in which

control flow within a procedure is statically determinable, Interprocedural

control flow occurs mainly by procedure call and procedure return, although

we will show how the algorithms can be extended to handle exceptions and

interprocedural jumps. Whether or not procedures are first-class objects does

not affect the instrumentation algorithms. The algorithms require only that a

CFG can be constructed for each procedure in the program. It is not necessary
to know which procedure is called at a particular call site,

We now review some graph terminology. A directed graph G = (V, E)

consists of a set of vertices V and set of edges E, where an edge e is an

ordered pair of vertices, denoted by u ~ w (note that parallel edges between

vertices are allowed; the notation u ~ w is an abbreviation). Vertex u is the

source of edge e, denoted by src(e), and vertex w is the target of edge e,

denoted by tgt (e). Edge v ~ w is an incoming edge of vertex w and an

outgoing edge of vertex u. If u + w, then vertex u is a predecessor of vertex

w, and vertex w is a successor of vertex v. A path in a directed graph is a

ACM TransactIons on Programming Languages and Systems, Vol 16, No. 4, July 1994,

Optimally Profiling and Tracing Programs . 1323

sequence of n vertices and n — 1 edges of the form (Ul, el, Uz, ..., e~. l, Un),
where, for each edge e,, either e, = v, ~ v,+ ~ or e, = U,+ 1 j v,. A cycle is a

path such that UI = u.. A path or cycle is directed if, for every edge et, e, =

vi e vi+ ~. Finally, a simple cycle is a cycle in which {v ~, ..., u._ ~} are distinct.

If a cycle is simple, then the edges in the cycle are distinct, but the converse

is not true.

We use the terms path and cycle to denote undirected paths and cycles.

When edge direction is important, we explicitly state that a path or cycle is

directed.

A CFG is a rooted directed graph G = (V, E) that corresponds to a

procedure in a program in the following way: Each vertex in V represents a

basic block of instructions (a straight-line sequence of instructions), and each

edge in E represents the transfer of control from one basic block to another.

In addition, the CFG includes a special vertex EXIT that corresponds to

procedure exit (return). The root vertex is the first basic block in the proce-

dure. There is a directed path from the root to every vertex and a directed

path from every vertex to EXIT. Finally, for the profiling algorithm, it is

convenient to insert an edge EXIT ~ root to make the CFG strongly con-

nected. This edge does not correspond to an actual flow of control and is not

instrumented. The EXIT vertex has no successors other than the root vertex.

A vertex p is a predicate if there are distinct vertices a and b such that

p-aandp+b.

A weighting W of CFG G assigns a nonnegative value (integer or real) to

every edge, subject to Kirchoffs flow law: For each vertex u, the sum of the

weights of the incoming edges of v must equal the sum of the weights of the

outgoing edges of u. The weight of a vertex is the sum of the weights of its

incoming (outgoing) edges. The cost of a set of edges andior vertices is the

sum of the weights of the edges and\or vertices in the set.

An execution of a procedure is represented by a directed path EX through

its CFG that begins at the root vertex (procedure entry) and ends at EXIT

(procedure return). The frequency of a vertex v or an edge e in an execution

EX is the number of times that u or e appears in EX. If a vertex or edge does

not appear in EX, its frequency is zero, except that the frequency of the edge

EXIT - root is defined to be the number of times that EXIT appears in the

execution. The edge frequencies for any execution of a CFG constitute a

weighting of the CFG.

A spanning tree of a directed graph G = (V, E), is a subgraph H = (V, T),

where T c E, such that every pair of vertices in V is connected by a unique

path (i.e., H connects all vertices in V, and there are no cycles in H). A
maximum spanning tree of a weighted graph is one such that the cost of the

tree edges is maximal. The maximum spanning tree of a graph can be

computed efficiently by a variety of algorithms [Tarjan 1983].

Figure 1 illustrates these definitions. The graph on the left is the CFG of

the program shown in the figure. This graph has been given a weighting. The

graph on the right is a maximum spanning tree of the graph on the left. Note

that any vertex in a spanning tree can serve as a root and that the direction

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1324 . T. Ball and J. R. Larus

program

while P do
if Q then

A
else

B
ti
if R then break fi
c

d

end

1

5.25

m-’”
Fig. 1. A program, its control-flow graph with a weighting, and a maximum spanmng tree. The

edge EXIT + P is needed so that the flow equations for the root vertex (P) and EXIT are

consistent. This edge does not correspond to an actual flow of control and is not instrumented,

of the edges in the tree is unimportant. For example, vertices C and EXIT

are connected in the spanning tree by the path C’ * P + EXIT.

An underlying concept in the instrumentation problems we consider is that

certain cycles in a CFG must contain instrumentation code (i.e., the instru-

mentation code must break certain cycles). We classify cycles based on the

direction of their edges. Let u, u, and w be three consecutive vertices in a

cycle. There is a fork at u if u + u + w, a join if u + u + w, and a pipe

otherwise (u ~ v q w or u + u + w). A cycle is pipeless if it contains no

pipes (i.e., the direction of edges strictly alternate around the cycle). A cycle is

piped if it contains at least one pipe. Piped cycles are further classified: A

diamond is a cycle with more than two distinct edges that has exactly one

fork and one join (there are two changes of direction in the cycle), a directed

cycle contains only pipes (all edges are in the same direction), and other

cycles are all other piped cycles. Figure 2 gives examples of these cycles.

3. PROGRAM PROFILING

To determine how many times each basic block in a program executes, the

program can be instrumented with counting code. The simplest approach

places a counter at every basic block (pixie and other instrumentation tools
use this method [MIPS Computer System~ 1990]). There are two drawbacks

to such an approach: (1) Too many counters are used, and (2) the total

number of increments during an execution is larger than necessary.

The vertex profiling problem, denoted by Vprof(cnt), is to determine a

placement of counters cnt (a set of edges and\or vertices) in CFG G such

that the frequency of each vertex in any execution of G can be deduced solely

from the CFG G and the measured frequencies of edges and vertices in cn t.

Furthermore, to reduce the cost of profiling, the set ent should minimize the

cost for a weighting W.

ACM TransactIons on Programming Languages and Systems, Vol. 16, No, 4, July 1994

Optimally Profiling and Tracing Programs . 1325

Pipeless Cycle . Diamond Directed Cycle Other ,

Piped Cycles

Fig. 2. Classification of cycles.

A similar problem is the edge profiling problem, denoted by Eprof(cnt):

Determine a placement of counters cnt in CFG G such that the frequency of

each edge in any execution of G can be deduced solely from the CFG G and

the measured frequencies of edges and vertices in cnt. A solution to the edge

frequency problem obviously yields a solution to the vertex frequency problem

by summing the frequencies of the incoming or outgoing edges of each vertex.

Given that we can place counters on vertices or edges, a counter placement

can take one of three forms: a set of edges (Ecnt), a set of vertices (Vent), or a

mixture of edges and vertices (lfcnt). Combined with the two profiling

problems, this yields six possibilities, We do not consider Eprof(Vcnt), since

there are CFGS for which there are no solutions to this problem [Probert

1975]. That is, it is not always possible to determine edge frequencies from

vertex frequencies. Mixed placements are of interest because placing counters

on vertices rather than on edges eliminates the need to insert unconditional

jumps.2 On the other hand, a vertex is executed more frequently than any of

its outgoing edges, implying that it might be worthwhile to instrument some

outgoing edges rather than the vertex. The usefulness of mixed placements

depends on the cost of an unconditional jump relative to the cost of incre-

menting a counter in memory. On RISC machines (for which we constructed a

profiling tool), the code sequence for incrementing a counter or generating a

tracing token ranges from 5 to 11 instructions (cycles). The cost of an

unconditional branch is quite small in comparison (usually one cycle, as the

delay slot of an unconditional branch can almost always be filled with a

useful instruction). In this case, there is questionable benefit from mixed

placements. In fact, Samples [1991] showed that mixed placements provide

little benefit over edge placements on a machine in which the increment and

branch costs were comparable, and were worse in some cases. Furthermore,

as shown in Section 6.1, for all of the benchmarks we examined, less than

z Placing instrumentation code along edges of the CFG essentially creates new basic blocks,

which may require the insertion of unconditional jumps (assuming that the linearization of the

original basic blocks is the same in the instrumented program as in the original program). On

the other hand, placing instrumentation code in vertices simply expands the extent of the

original basic blocks and does not require insertion of jumps. It is possible to rearrange the

placement of basic blocks to minimize the number of unconditional jumps needed, as discussed

by Ramanath and Solomon [1982]. However, our algorithms do not perform such an optimiza-

tion, as they respect the original linearization.

ACM Transactions on Programming Languages and Systems, Vol 16, No 4, July 1994.

1326 . T. Ball and J, R Larus

EproflEcnt) VproflVcnt)

4 h EproflEcnf) = VproflEcnt) = VproflVcnt)

VproflEcnt)

(a) (b)

Fig, 3. (a) Relationship between costs of optimal solutions of three frequency problems for

general control-flow graphs. (b) Relationships when control-flow graphs are constructed from

while loops, if-then-else conditionals, and begin-end blocks

half of the instrumented edges (which is about one-quarter of the total

number of control-flow edges) required unconditional jumps when profiling

with edge counters. For these reasons, we do not consider mixed counter

placements.

We focus on the remaining three profiling problems: Vprof(Vcnt),

Eprof(Ecnt), and Vprof(Ecnt). This section presents four results:

(1) A comparison of the optimal solutions to vprof(Vcnt), Eprof(Ecnt), and
Vprof(Ecnt). Figure 3 summarizes the relationship between these three

problems for general and structured CFGS. X < Y means that for any

given CFG and weighting, an optimal solution to problem X has a cost

less than or equal to the cost of an optimal solution to problem Y. In

general, for any weighted CFG, an optimal solution to Vprof(Ecnt) is

always at least as cheap as an optimal solution to Eprof(Ecnt) or

Vprof(Vcnt).

(2) A characterization of when a set of edges Ecnt is necessary and sufficient
for Eprof(Ecnt), and an algorithm to solve Eprof(Ecnt) optimally. We

also describe the problem introduced by early procedure termination, as

well as a simple solution.

(3) A characterization of when a set of edges Ecnt is necessary and sufficient
for Vprof(Ecnt). However, it appears difficult to find a minimal size or

cost set of such edges efficiently. We show that an optimal solution to
Eprof(Ecnt) is also an optimal solution to Vprof(Ecn t) for a large class of

structured CFGS and present a heuristic for solving Vpi-of(Ecrzt) using

the Eprof(Ecnt) algorithm as a subcomponent.

(4) A discussion of the time complexity of the profiling and tracing problems,
based on their characterization as cycle breaking problems,

3.1 Comparing the Three Profiling Problems

This section examines the relationships between the optimal solutions to

Vprof(Vcnt), Eprof(Ecnt), and Vprof(Ecnt) for general CFGS, as summarized

in Figure 3a.

The three CFGS in Figure 4 illustrate optimal solutions to Vprof(Vcnt),

Eprof(Ecnt), and Vprof(Ecnt) (for the weighting given in the first CFG). The

black dots represent counters. The costs of the three counter placements are

124, 62, and 59, respectively. In each case, every counter is necessary to

determine a profile uniquely, and no lower-cost placements will suffice. For

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No 4, July 1994

Optimally Profiling and Tracing Programs . 1327

6

%

8
3

43 b

22 c
10 50

d 21

3

22 ~

(!!($
3

f
3 3

h

3 3

EXIT

(a) (b) (c)

Fig. 4. O~timal solutions for (a) vertex urofilimz with vertex counters, Vprof(Vcnt): Cost = 53 +

43-+ 22 +’ 2*3 = 124; (b) edge profiling-with e~ge counters, llprof(~c~t): ‘Cost = 22 + 21 + 10

+ 3*3 = 62; and (c) vertex profiling with edge counters, Vprof(Ecnt): Cost = 22 + 21 + 10 +

2’3 = 59.

example, if the counter on vertex b in Figure 4a were eliminated, it would be

impossible to determine how many times b or e executed. In Figure 4a the

counts for vertices a, e, f, and EXIT are not directly measured, but can be

deduced from the measured vertices as follows: e = b; a = f = EXIT= g + h.

In Figure 4b the count for each unmeasured edge is uniquely determined by

the counts for the measured edges by Kirchoffs flow law (e.g., a ~ f = f ~ g
+ f - h – e - f). In Figyre 4C the count for each Unmeasured edge except

those in the set {a ~ b, e ~ b, e ~ f, a - f} is uniquely determined by the

measured edges. This yields enough information to deduce the count for each

vertex.

For any CFG and weighting, an optimal solution to Vprof(Vcnt) never has

a lower cost than an optimal solution to Vprof(Ecnt) (for every vertex v in

Vent, v‘s counter can be “pushed” off u onto each outgoing edge of u,

resulting in counter placement Ecnt, which clearly solves the vertex profiling

problem with cost equal to Vent). Figure 4 shows an example where

Vprof(Ecnt) has a lower cost than Vprof(Vcnt). The counter placement in

Figure 4C solves Vprof(Ecnt) and has a lower cost than the counter place-

ment in Figure 4a, which solves Vprof(Vcnt).

Since any solution to Eprof(Ecnt) must also solve Vprof(Ecnt), an optimal

solution to Eprof(Ecnt) can never have a lower cost than an optimal solution

to Vprof(Ecnt), for a given CFG and weighting. The counter placement in

Figure 4C solves Vprof(Ecnt) and has a lower cost than the counter place-
ment in Figure 4b, which solves Eprof(Ecnt). In comparing Eprof(Ecnt) and

Vprof(Vcnt), there are examples in which one has a lower cost than the other

and vice versa. Figures 4a and b show examples where Vprof(Vcnt) has a

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1328 . T. Ball and J. R. Larus

higher cost than Epro~(Ecnt). Figure 4C can be easily modified to show an

example where Vprof(Vcnt) has a lower cost than Eprof(Ecnt). Consider

each black dot as a vertex in its own right, and split the dotted edge into two

edges. The dots constitute the set Vent and solve Vprof(Vent) with a cost of

59. The optimal solution to Eprof(Ecnt) for this graph still has a cost of 62.

3.2 Edge Profiling with Edge Counters

Eprof(Ecnt) can be solved by placing a counter on the outgoing edges of each

predicate vertex. However, this placement uses more counters than neces-

sary. Knuth [1973] describes how it follows from Kirchoffs law that an

edge-counter placement Ecnt solves Eprof(Ecnt) for CFG G = (V, E) iff

(E – Ecnt) contains no (undirected) cycle. Since a spanning tree of a CFG

represents a maximum subset of edges without a cycle, it follows that Ecnt is

a minimum-size solution to Eprof(Ecnt) iff (E – Ecnt) is a spanning tree of

G. Thus, the minimum number of counters necessary to solve Eprof(Ecnt) is

IEI - (IVI - 1).

To see how such a placement solves the edge frequency problem, consider

CFG G and a set Ecn t such that E – Ecnt is a spanning tree of G. Let each

edge e in Ecnt have an associated counter that is initially set to zero and is

incremented once each time e executes. If vertex u is a leaf in the spanning

tree (i.e., only one tree edge is incident to u), then all remaining edges

incident to u are in Ecnt. Since the edge frequencies for an execution satisfy

Kirchoffs law, the unmeasured edge’s frequency is uniquely determined by

the flow equation for v and the known frequencies of the other incoming and

outgoing edges of u. The remaining edges with unknown frequency still form

a tree, so this process can be repeated until the frequencies of all edges in

E – Ecnt are uniquely determined. If E – Ecnt contains no cycles, but is not

a spanning tree, then E – Ecnt is a forest of trees. The above approach can

be applied to each tree separately to determine the frequencies for the edges

in E – Ecnt.

Any of the well-known maximum spanning-tree algorithms described by

Tarjan [1983] will efficiently find a maximum spanning tree of a CFG with

respect to a weighting. The edges that are not in the spanning tree solve

Eprof(Ecnt) and minimize the cost of Ecnt. As a result, counters are placed

in areas of lower execution frequency in the CFG. To ensure that a counter is

never placed on EXIT ~ root, the maximum spanning-tree algorithm can be

seeded with the edge EXIT + root. In fact, for any CFG and weighting, there
is always a maximum spanning tree that includes the edge EXIT ~ root. The

derived count for the edge EXIT - root represents the number of times the

procedure associated with the CFG executed.

Figure 5a illustrates how the frequencies of edges in E – Ecnt can be

derived from the frequencies of edges in Ecnt. Black dots identify edges in

Ecnt. The other edges are in E – Ecnt and form a spanning tree of the CFG.

The edge frequencies are those for the execution shown. However, we empha-

size that the only edges for which frequencies will be recorded are the edges

with black dots. Let vertex P be the root of the spanning tree. Vertex Q is a

ACM Transactions on Programming Languages and Systems, Vol 16, No 4, July 1994

Optimally Profiling and Tracing Programs . 1329

leaf in the spanning tree and has the flow equation (P ~ Q = Q - A +

Q - B). Since the frequencies for P ~ Q and Q ~ A are known, we can

substitute them into this equation and derive the frequency for Q e B. Once

the frequency for Q - B is known, the frequency for B ~ R can be derived

from the flow equation for B, and so on. For the weighting given in Figure 1,

the counter placement in Figure 5a has a cost of 16.75. However, Figure 5b

shows a counter placement induced by the maximum spanning tree, with a

resultant cost of 11.5.

The propagation algorithm in Figure 6 performs a postorder traversal of

the spanning tree E – Ecnt, propagating the frequencies of edges in Ecnt to

the unprofiled edges in the spanning tree. The procedure DFS calculates the

frequency of a spanning-tree edge. Since the calculation is carried out post-

order, once the last line in DFS(Ecnt, u, e) is reached, the counts of all edges

incident to vertex u except e have been calculated. The flow equation for u

states that the sum of u‘s incoming edges is equal to the sum of u‘s outgoing

edges. One of these sums includes the count from edge e, which has been

initially set to zero. The count for e is found by subtracting the minimum of

the two sums from the maximum.

Although profiling has been described in terms of a single CI?G, the

algorithm requires few changes to deal with multiprocedure programs. The

preexecution spanning-tree algorithm and postexecution propagation of edge

frequencies can be applied to each procedure’s CFG separately. This simple

extension for multiprocedure profiling will determine the correct frequencies

whenever interprocedural control flow occurs only via procedure call and

return and whenever each call eventually has a corresponding return.3

Statically determinable interprocedural jumps (other than procedure call and

return) can be handled by adding edges corresponding to the interprocedural

jumps and instrumenting these edges. Determining whether or not such an

interprocedural edge needs to be instrumented would require interprocedural

analysis that we do not perform.

A problem arises with dynamically computed interprocedural jumps such

as setjmp \ longjmp in the C language [Kernighan and Ritchie 1988], or

early program termination, as may be caused by a system call or an error

condition. In these cases, one or more procedures terminate before reaching

the EXIT vertex, breaking Kirchoffs law. For example, suppose that the

CFG in Figure 7a executes the path shown at the top of the figure. Further-

more, suppose that the execution terminates early at vertex A because of a

divide-by-zero error. As a result, control enters vertex A once via the edge

Q + A, but never exits via A -R. However, because the propagation algo-

rithm (see Figure 6) assumes that Kirchoffs law holds at each vertex, edge

3 For the purposes of determining the frequencies of intraprocedural control-flow edges, it does
not matter whether procedures and functions are first-class objects. For programs with a fixed

call-graph structure, the intraprocedural frequency information is sufficient to determine the

frequency of edges in the call graph. For programs with procedure or function parameters, a tool

must record the callee at call sites at which the callee is determined at run time.

ACM Transactions on Programming Langaages and Systems, Vol. 16, No. 4, July 1994.

1330 . T, Ball and J. R. Larus

Execution: PQARC PQBRC PQBR EXIT

o
1

(a) (b)

Fig. 5 Solving Eprof(Ecnt) using the spanning tree. For the weighting given in Figure 1, the

counter placement in (a) is not optimal (is not of mmlmal cost), whereas the counter placement in

(b) 1s optimal.

global

G: control-flow graph

E edges of G

cnt: smay[edge] of integer /* for e~h edge e in Ecnt, cn~e] = f~Uency of C in eXeCUtiOn ●/

procedure propagate_eounts(Ecrrr: set of edges)

begin

for each e e E - EcrI/ do cnt[e] := O od

DFS(Ecnt, root-vertex(G), NfJLL)

end

prucedure DFS(.Ecnf. set of edges; v vertex; e: edge)

let LV(v)=(e’le’~Eand v=rgr(e’)) and OUT(v) ={t]’[e’e Esndv=frc(e?] In

in_surn := O

for each e’ ● IN(v) do

if (e ‘ # e) snd e ‘ ~ E – Ecnr then DFS(.Ecnt, src (e ‘), e ‘) tf
in_surrr := in_sufn + cnt[e ‘]

or-f

Our_sum := o

for each e ‘ ~ OUT(v) do

If (e ‘ # e) and e ‘ e E – Ecrrf then DFS(Ecnr. rgr (e ‘). e ~ fi(

OUt_.rUm := oul_sum + cn~c ~

d

if e # NULL then cn(e] := max(ln_fi4rrr, oW_sum) – min(in_sum, oW_sum) 6

551

Fig 6. Edge propagation algorlthm determines the frequencies of edges in spanning tree

E – Ecnt grven the frequencies of edges in Ecnt. The algorithm uses a postorder traversal of the

spanning tree.

ACM Transactions on Programmmg Languages and Systems, Vol 16, No 4. July 1994

Optimally Profiling and Tracing Programs . 1331

Execution: P Q B R C P Q A (divide by O)

—-l

[a)

Fig. 7. (a) Early termination at vertex

addition of edge A + EXIT.

A - R receives a count of one,

(b)

A yields incorrect counts, (b), which are corrected by the

as shown in Figure 7a. In this example, the
count is off by one. However, in general, if multiple procedures on the

activation stack are exited early and if early exiting is a common occurrence,

the counts may diverge greatly.

In this case, information available on the activation stack is sufficient to

correct the count error. Conceptually, for each procedure X cm the activation

stack that exits early, an edge u ~ EXIT with a count of one is added to

procedure X’s CFG, where u is the vertex from which procedure X called the

next procedure. This edge models early termination of procedure X at vertex

U. In practice, the edge u ~ EXIT is represented by an “exit” counter that is

associated with the vertex u. This counter is incremented once for each time

procedure X exits early when at vertex U. For early termination caused by a

conditional exception (such as divide-by-zero), the increment code must be

placed in the exception handler rather than at vertex u, since the code should

be invoked only when u raises the exception. For early termination caused by

longjmp, the increment code must also be in the handler since longjmp may

pop many activation frames off the stack, each of which requires increment-

ing the associated exit counter.

Figure 7b illustrates how the early-exit problem is solved. Because the

procedure terminates early at vertex A, the edge A - EXIT is added to the

CFG and given a count of one. This additional edge correctly siphons off

the incoming flow to vertex A so that the propagation algorithm yields

correct counts. As shown in Figure 7b, edge A s R correctly receives a count

of zero.

3.3 Vertex Profiling with Edge Counters

This section addresses the problem of vertex profiling with edge counters.

Section 3.3.1 characterizes when a set of edges Ecnt solves Vprof(Ecnt), and

gives an algorithm for propagating edge frequencies through the CFG to

ACM Transactions on Programming Languages and Systems, Vol 16, No 4, July 1994.

1332 . T. Ball and J R, Larus

determine vertex frequencies. As discussed in Section 3.4, it appears difficult

to solve Vprof(Ecrzt) efficiently while minimizing the size or cost of Ecnt.

However, as discussed in Section 3.3.2, there are certain classes of CFGS for

which an optimal solution to Eprof(Ecnt) is also an optimal solution to

Vprof(Ecnt). For this class of CFGS, the counter placements induced by the

maximum spanning tree are optimal. Finally, Section 3.3,3 presents a heuris-

tic for finding an Ecnt placement to solve Vprof(Ecnt) that improves on the

spanning-tree approach in certain situations.

3.3.1 Characterization and Algorithm. Edge profiling with edge counters

requires that every (undirected) cycle in the CFG contain a counter. Since an

edge profile determines a vertex profile, vertex profiling requires no more

edge counters than does edge profiling. However, as illustrated in Figure 4c,

there are cases in which fewer edge counters are needed for vertex profiling

than for edge profiling. In this example, there is a cycle of counter-free edges,

yet there is enough information recorded to determine the frequency of every

vertex. This section formalizes this observation. That is, certain types of

counter-free cycles are allowed when using edge counters for vertex profiling,

as captured by the following theorem:

THEOREM. A set of edges Ecnt solves Vprof[Ecnt) for CFG G = (V, E) iff

each simple cycle in E – Ecnt is pipeless (i. e., edges in any simple cycle in

E – Ecnt alternate directions).

Pipeless cycles are allowed in E – Ecnt as well as nonsimple piped cycles,

as long as the simple cycles that compose them are pipeless. In Figure 4C the

counter-free cycle represented by the set of edges {a + b, e ~ b, e G f,

a ~ f} is pipeless. (In Figure 9a, the counter-free edges contain a piped cycle;

however, the cycle is not simple. Both simple counter-free cycles in this

example are pipeless.)

Let freq be the function mapping edges in a CFG to their frequency in an

execution. We give an algorithm that (given the frequencies of edges in Ecnt

in the execution and the assumption that E – Ecnt contains no simple piped

cycle) will find a function freq’ from edges to frequencies that is vertex-

frequency equivalent to freq. That is, for any vertex u the sum of the
frequencies of u‘s incoming (outgoing) edges under freq’ is the same as under

freq. We first explain the algorithm and show how it operates in an example.

We then prove the correctness of the algorithm, showing that if E – Ecnt

contains no simple piped cycle then Ecnt solves Vprof(Ecnt). Finally, we
show that if E – Ecnt contains a simple piped cycle then it is not possible for

Ecnt to solve Vprof(Ecnt).

Figure 8 presents the propagation algorithm. The frequencies for edges in

Ecnt have been determined by an execution EX. The algorithm operates as

follows: While there is a (simple) cycle C in the set of edges E – (Ecnt u

Break), an edge e from cycle C is added to the set Break, and the frequency

of edge e is initialized to zero. Once E – (Ecnt U Break) is acyclic, it follows

that the frequencies of edges in Ecnt u Break uniquely determine the fre-

quencies of the other edges (by the spanning-tree propagation algorithm, as

ACM Transactions on Programmmg Languages and Systems, Vol 16, No 4, July 1994

Optimally Profiling and Tracing Programs . 1333

/* Assumption: E - Ecnt contains no simple piped cycle ‘/

/* for each edge e in E2nr, cnt[e] = frequency of e in execution ‘/

Break :=0

while there is a simple cycle C in E-(Ecnr v Breczk) do

let e be an edge in C in

Break := Break u { e)

cnt[e] := O

ni

cd

propagate_counts(Ecrrf uBreuk) /* from Figure 6 ‘/

Fig. 8, Algorithm for propagating edge counts to determine vertex counts.

given in Figure 6). As we will show, the vertex frequencies determined by

these edge frequencies are the true vertex frequencies in the execution EX.

Figure 9 presents an example of how this algorithm works. The CFG in

Figure 9a contains two simple cycles in E – Ecnt. As usual, edges in Ecnt

are marked with black dots. Each of the counter-free simple cycles is clearly

pipeless. These two simple cycles combine into a nonsimple cycle containing a

pipe, which is allowed under the structural characterization of Vprof(Ecnt).

The edges in the CFG are numbered with their frequencies from some

execution. The frequencies of the checked edges can be derived easily from

the frequencies of the edges in Ecnt. From these frequencies, the count of

every vertex except the gray vertex can clearly be determined. How do we

derive counts for the edges in the two simple pipeless cycles in order to

determine the frequency of the gray vertex? Suppose the algorithm chooses to

break the two simple cycles in E – Ecnt by putting the dashed edges (see

Figure 9b) into the set Break, giving both a frequency of O, as shown in

Figure 9b. Spanning-tree propagation of edge frequencies in the set Ecnt U

Break to edges in E – (Ecnt U Break) assigns unique frequencies to the

other edges in the simple pipeless cycles, as shown in Figure 9b. The sum of

the frequencies of the incoming (outgoing) edges to the gray vertex is 2, which

is the correct frequency (even though the frequencies of edges in the pipeless

cycle are not the same as in the execution).

We now prove the correctness of the algorithm. Let freq be the function

mapping edges in a CFG to their frequency in an execution, and let ~req’ be

the function from edges to frequencies created by the algorithm of Figure 8.

We show that freq’ is vertex-frequency equivalent to freq by induction on the

size of Break (as determined by the algorithm).

Base Case. IBreak I = O. In this case, E – Ecnt contains no cycles. There-

fore, Ecnt solves Eprof(Ecnt), so freq’ = freq. It follows directly that ~req’ is

vertex-frequency equivalent to freq.

Induction Hypothesis. If IBreak I < n, then freq’ is vertex-frequency

equivalent to freq.

ACM TransactIons on Programming Languages and Systems, Vol 16, No. 4, July 1994.

1334 . T. Ball and J. R. Larus

4 2

3

12

4

(a)

3 5

(b)

Fig 9. (a) Example control-flow graph in which E – Ecnt contains two simple pipeless cycles

(b) If the dashed edges are assigned frequency O, spanning-tree propagation assigns the frequen-

cies shown to the remaining edges in the simple pipeless cycles This yields a count of two for the

gray vertex, which is its correct frequency,

Induction Step. Suppose that IBreak I = n + 1.Consider taking an edge e

from Break and putting it in Ecnt, resulting in sets Break ~ and Ecn t.. By

the Induction Hypothesis, the function freq~ (defined by Break ~ and Ecnt~)

is vertex-frequency equivalent to freq. We show that function freq’ is vertex-

frequency equivalent to freq~, completing the proof. Let T = E – (Ecnt u

Break). The addition of edge e to T creates a simple pipeless cycle C in T. We

define a function g, based on function freq~, edge e, and cycle C, as shown

below. We show that function g has three properties:

(1) Function g is vertex-frequency equivalent to freq~;

(2) function g satisfies Kirchoffs flow law at every vertex; and

(3) for each edge f = Ecnt U Break, g(f) = freq’(f).

Points (2) and (3) imply that g and freq’ are identical functions (because the

values of edges in Ecnt U Break uniquely determine the values of all other

edges by Kirchoffs flow law). Therefore, point (1) implies that freq’

vertex-frequency equivalent to freq~. The function g is defined as follows:

‘freq.(f)

if edge f is not in cycle C;

freqn(f) – freq.(e)
g(f)= <

if edge f is in cycle c, in the same direction as edge e;

freq~(f) + freq~(e)

(otherwise.

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 4, July 1994

is

Optimally Profllmg and Tracing Programs . 1335

We first show that Kirchoffs flow law holds at every vertex under g and that

g is vertex-frequency equivalent to freq.. This is obvious for vertices that are

not in C (since the frequency of any edge incident to such a vertex is the same

under g and freq.). Because every vertex u in C appears in either a fork or a

join in the cycle, one of the edges incident to u will have freq.(e) subtracted

from its frequency, and the other will have ~req~(e) added to its frequency,

thus preserving the flow law and vertex frequency at u.

We now prove point (3). It is clear that g(e) = O = freq’(e). We must show

that, for each edge f c Ecnt u Break., g(f) = freq’(f). By definition, for
each edge f @ C, g(f) = freq.(f). Cycle C contains no edges from Ecnt U

Break.. Since freq’(f) = freq.(f) for all edges in Ecnt U Break., it follows

that, for each such edge f, g(f) = freq’(f).

If E – Ecnt contains a simple piped cycle, then there are two executions of

G with different frequencies for some vertex, but for which the frequencies of

edges in Ecnt are the same. This is clear if E – Ecnt contains a directed

cycle or contains two edge-disjoint directed paths between a pair of vertices

(i.e., a diamond). Figure 10 gives an example of a CFG in which E – Ecnt
contains a piped cycle (the pipe is at vertex B) that is neither a directed cycle

nor a diamond and shows two different execution paths. Both execution paths

traverse each instrumented edge (x, y, z) exactly once. However, EXI

contains vertex B, while EXZ does not.

Another way to look at this is that the edge frequencies in a cycle in

E – Ecnt are unconstrained. Let freq~ be a function mapping edges to values

that satisfies Kirchoffs flow law at every vertex. Applying the function

transformation defined in the above proof to freq. based on a piped cycle in

E – Ecnt results in a function g such that Kirchoffs flow law holds at every

vertex. While the frequency of each vertex in a fork or join in the cycle

remains the same (as shown above), the frequency of the vertex in the pipe

will have changed.

3.3.2 Cases for Which Eprof(Ecnt) = Vprof(Ecnt). This section examines

a class of CFGS for which an optimal solution to Vprof(Ecnt) can be found

efficiently, namely, those for which an optimal solution to Eprof(Ecnt) is also

an optimal solution to Vprof (Ecnt). Let G* represent all CFGS in which every

cycle contains a pipe. For any CFG G in G* with weighting W, the following

statements are equivalent:

(1) Ecnt is a minimal-cost set of edges such that E – Ecnt contains no

simple piped cycle, and

(2) E – Ecnt is a maximum spanning tree of G.

It follows directly from these two observations that, for any CFG in G*, an

optimal solution to Eprof(Ecnt) is also an optimal solution to Vprof(Ilcnt).

The class of graphs G* contains CFGS with multiple exit loops (such as in
Figure 1), CFGS that can only be generated using gotos, and even some

irreducible graphs. The class G* contains those structured CFGS generated

by while loops, if-then-else conditionals, and begin-end blocks (because

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1336 . T. Ball and J. R. Larus

D
P

x Y

Q R
,. ,. ,....,..” ., ..‘“ ..

d

.,. ,,

B A
,.,,

z...
‘......, ...’”

EXIT ““”’”’

....
‘xl P, Q;B~ Exrf, p, R A, EXIT

x’ Yz

EX2

P, Q, A, EXIT, P, R, EXIT

x z y

Fig. 10. Example of instrumentation that is not suftlcient for vertex profiling, Dashed edges in

the control-flow graph constitute a simple cycle of uninstrumented edges with a pipe (at vertex

B). Executions EXI and EXZ traverse each instrumented edge the same number of times, but

EXI contains B and EXZ does not.

every simple cycle in these CFGS is either a directed cycle or a diamond).

However, in general, CFGS of programs with repeat-until loops or breaks

are not always members of G*. The CFG in Figure 4 is an example of such a

graph.

3.3.3 Heuristic for Vprof(Ecnt). Because we believe Vprof(Ecnt) is a hard

problem to solve optimally, we developed a heuristic for Vprof(Ecnt). The

heuristic first computes a maximum spanning tree ST (inducing a counter

placement on the edges not in the tree) and then checks if any counters can

be removed without creating simple piped cycles in the set of counter-free

edges. An algorithm for the heuristic is given in Figure 11.

The heuristic makes use of the following observation: If ST is a spanning

tree and if edge e is not in ST, then the addition of e to ST creates precisely

one simple cycle C@ in ST. The heuristic examines each such cycle C, in turn.

To prevent two counter-free pipeless cycles from combining into a simple

counter-free piped cycle, it marks all vertices in the cycle Cc when a counter

is removed from e; a counter is removed from an edge e only if cycle C, is

pipeless and contains no marked vertices. The heuristic is described in detail

in Figure 11. Upon termination, the set “Remove” cent ains all edges whose

counters can be removed safely. By considering edges in decreasing order of

weight, the algorithm tries to remove counters with higher cost first.

Consider the application of the heuristic to the CFG in Fig-are 4. Figure 4b

shows the counter placement resulting from the maximum spanning-tree

algorithm. Removing the counter on edge e - ~ creates a pipeless cycle in the

set of counter-free edges. Removing the counter from any other edge creates a

piped cycle in the set of counter-free edges. In this example, the heuristic

produces the optimal counter placement in Figure 4c. However, there are

examples for which this heuristic will not find an optimal solution to

Vprof(Ecnt).

3.4 Cycle-Breaking Problems

The problems of profiling and tracing programs with edge instrumentation

can be described as cycle-breaking problems, where certain types of cycles in

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994,

Optimally Profiling and Tracing Programs . 1337

Remove:= 0
amnarkrdl verticesin G
Endamaximam spanningtreeSTof G
for each edgee @5T(in decreasingorder in weight) do

adde to ST
ff (the cycle C, in STis pipeless) and (no vertexin Ccis marked)then

mark eachvefiex in CC
Remove.= Removeu (e)

6
removee from ST

Od

Fig. 11. Heuristic for Vprof(Ecrztl

Eprof7Ecn:)

Undirected Cycles

L,o.,cnr, Y

Pipeless Cycles

/Hpe~c’c’esx Trllct’(,,>,, “

Other Directed Cycles Diarrmnds
?,? ivP JvP.’

.-.
NP

Fig. 12. Hierarchy of cycles, profiling or tracing problems they correspond to, and time complex-
ity for breaking all cycles of a given type (P = polynomial; Np = Np-complete; 7? = unknown).

the CFG must contain instrumentation code. Figure 12 summarizes the

classification of cycles presented in Section 2, the problems they correspond

to, and the known time complexity for (optimally) breaking each class of

cycle. Solving l@ro~(Ecnt) corresponds to breaking all undirected cycles.

Solving Vprof(Ecnt) corresponds to breaking all simple piped cycles, as we

have shown in Section 3.3. Finally, as discussed in Section 4, solving the

tracing problem corresponds to breaking all directed cycles and diamonds.

Of course, we are interested in a minimum-cost set of edges that breaks a

certain class of cycles. Finding a minimum-size set of edges that breaks all

directed cycles is an NP-complete problem (Feedback Arc Set [Garey and

Johnson 1979]). Maheshwari showed that finding a minimum-size set of

edges that breaks diamonds is also NP-complete (Unconnected Subgraph

[Garey and Johnson 1979; Maheshwari 19761). h!tinirnizing with respect to a

weighting (that satisfies Kirchoffs flow law) does not make either of these

problems easier. Furthermore, it is easy to show that optimally breaking both

directed cycles and diamonds is no easier than either problem in isolation.

Solving the tracing problem so that the cost of the instrumented edges is

minimized is an NP-complete problem, as shown in an unpublished result by

S. Pottle (Oct. 1991). The reduction is similar to that used by Maheshwari,

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1338 . T, Ball and J. R. Larus

pc:= root-vertex(G)

Outpuuj?c)

Fig. 13 Regenerating an execution from a
do

U not IsPredicate@c)thenpc := successor(G,pc)
predicate trace.

else pc := read(frace) 6

Outputf.pc)

untiI(pc= EXIT)

but is complicated by the requirement that a weighting satisfies Kirchoffs

flow law.

We believe that optimally solving Vprof(Ecnt) (minimizing the size or cost

of Ecnt) is an NP-complete problem, but do not have a proof as of yet. We

have shown that a related problem, finding a minimum-size set of edges that

breaks all pipes, is NP-complete. Breaking all pipes guarantees that all piped

cycles will be broken, but not necessarily optimally (as it is possible to break

all piped cycles without breaking all pipes).

4. PROGRAM TRACING

Just as a program can be instrumented to record basic-block execution

frequency, it also can be instrumented to record the sequence of executed

basic blocks. The tracing problem is to record enough information about a

program’s execution to reproduce the entire execution. A straightforward way

to solve this problem is to instrument each basic block, so whenever it

executes it writes a unique token (called a witness) to a trace file. In this case,

the trace file need only be read to regenerate the execution. A more efficient

method is to write a witness only at basic blocks that are targets of’ predicates

[Larus 1990]. Figure 13 regenerates the execution from a predicate trace file

and the program’s CFG G.

Assuming a standard representation for witnesses (i.e., a byte, half-word,

or word per witness), the tracing problem can be solved with significantly less

time and storage overhead than the above solution by writing witnesses when

edges are traversed (not when vertices are executed) and carefully choosing

the witnessed edges. Section 4.1 formalizes the tracing problem for single-

procedure programs. Section 4.2 considers complications introduced by multi-

procedure programs.

4.1 Single-Procedure Tracing

In this section assume that basic blocks do not contain calls and that the

extra edge EXIT ~ root is not included in the CFG. The set of instrumented
edges in the CFG is denoted by Ewit. For tracing, whenever an edge in Ewit

is traversed, a “witness” to that edge’s execution is written to a trace file. We

assume that no two edges in Ewit generate the same witness, although this

is stronger than necessary, as it may be possible to reuse witnesses in some

cases. The statement of the tracing problem relies on the following defini-

tions:

Definition. A path in CFG G is witness-free with respect to a set of edges

Ewit iff no edge in the path is in Ewit.

ACM Transactions on Programmmg Languages and Systems. Vol 16, No 4. July 1994

Optimally Profiling and Tracing Programs . 1339

bEXIT

Execution: P A C P B A C P B C EXIT
AA AA

Trace: t u v EOF

wltness(P, A) = { t} witness(B,A) = { u }

vlfness(P, B) = { u, v } v.itness(B, C) = { v]

wimess(C, P) = { L u, v }

witness(C, EXIT) = { EOF }

Fig. 14. Example of a traced function. Vertices P, B and C are predicates. Witnesses are shown

by labeled dots on edges. For the execution shown, the trace generated is (t, U, v, EOF~ Witness
EOF is always the last witness in a trace. The execution can be reconstructed from the trace

using the witness sets to guide which branches to take.

Definition. Given a CFG G, a set of edges Ewit, and edge p - q, where p

is a predicate, the witness set (to vertex q) for predicate p is

witness (G, Ewit, p, q)

= {w I p + q = Ewit (and writes witness w)}

u {w] x ~ y e Ewit (and writes witness w)

and 3 witness-free path p + q + “.. + x}

u { EOF 13 witness-free path p + q + .”” + EXIT}.

Figure 14 illustrates these definitions. We use witness(P, g) as an abbrevi-

ation for witness(G, Ewit, p, q).

Examine how the execution in Figure 14 can be regenerated from its trace.

Reexecution starts at predicate P, the root vertex. To determine the successor

of P, we read witness t from the trace, which is a member of witness(P, A),

but not of witness(P, B). Therefore, A is the next vertex in the execution.

Vertex C follows A in the execution, as it is the sole successor of A. Since the

edge that produced witness t (P ~ A) has been traversed already, we read

the next witness. Witness u is a member of witness(C, P), but not witness(C,

EXIT), so vertex P follows C. At vertex P, witness u is still valid (since the

edge B ~ A has not been traversed yet) and determines B as P’s successor.

Continuing in this manner, the original execution can be reconstructed.

If a witness w is a member of both witness(G, Ewit, p, a) and witness(G,

Ewit, p, b), where a + b, then two different executions of G may generate

the same trace, which makes regeneration based solely on control flow and

trace information impossible. For example, in Figure 14, if the edge P ~ A

did not generate a witness, then witness(p, A) = {u, V, EOF) and Witness(p,

~j = {u, v}. The executions (P, A, C, P, B, C, EXIT) aiid (P, B, C, EXIT)

both generate the trace (v, EOF). This motivates our definition of the tracing

problem:

Definition. A set of edges, Ewit, solves the tracing problem for CFG G,

denoted by Trace(Ewit), iff for each predicate p in G with successors

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1340 . T. Ball and J. R. Larus

procedure regenerate(G:CFG, ,??wir:setof witnessededges;rruce: file of wimesses)
declare

pc, newpc: vertices

wil: witness

begin

pC:= root-vertex(G)

wit := read(fr-ace)

outpur@c)

do

if ontIsPredicate@c)then
newpc := successo<G, pc)

else

newpc := q such that wir ~ wI/nesJ (G, Ew,ir, pc, q)

6

ifpc-+newpc e EwIr then wif.= read(rmce) 6

pe .= newpc

Ourput(pc)

until (pc = EX/T)

end

Fig. 15 Algorithm for regenerating an execution from a trace,

(71> ...7 qm, for all pairs (qL, qJ) such that i #j, witness(G, Ewit, p, q,) n

witness (G, Ewit, p, q,) = 0.

It is straightforward to show that Ewit solves Trace(Ewit) for CFG G iff

E – Ezoit contains no diamonds or directed cycles. Optimally breaking dia-

monds and directed cycles is an NP-complete problem, as discussed in Section

3.4. Note that any solution to Eprof(Ecnt) or Vprof(Ecri t) is also a solution to

Trcrce(Ewit), as breaking all undirected cycles or all simple piped cycles is

guaranteed to break all directed cycles and diamonds. Edges not in the

maximum spanning tree of the CFG comprise Ewit and solve Trace(Ewit)

(but not necessarily optimally). However, for any CFG G in G*, an optimal

solution to Eprof(Ecnt) is also an optimal solution to Trace(Ewit) (because

all directed cycles and diamonds are piped cycles and every cycle in a CFG

from G’ is piped).

Given a CFG G, a set of edges Ewit that solves Trace(Ewit), and the trace

produced by an execution EX, the algorithm in Figure 15 regenerates the

execution EX.

4.2 Multiprocedure Tracing

Unfortunately, tracing does not extend as easily to multiple procedures as

profiling does. There are several complications that we illustrate with the

CFG in Figure 14. Suppose that basic block B contains a call to procedure X

and that execution proceeds from P to B, where procedure X is called. After

X returns, suppose that C executes. This call creates problems for the

regeneration process, since the witnesses generated by procedure X and the

procedures it invokes, possibly an enormous number of them, precede witness

v in the trace file.

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 4, July 1994

Optimally Profihng and Tracing Programs . 1341

In order to determine which branch of predicate P to take, the witnesses

generated by procedure X could be buffered, or witness set information could

be propagated across calls and returns (i.e., along call-graph edges as well as

control-flow edges). The first solution is impractical, since the number of

witnesses that may have to be buffered is unbounded. The second solution is

made expensive by the need to propagate information interprocedurally and

is complicated by multiple calls to the same procedure, calls to unknown

procedures, and recursive calls. Furthermore, if witness numbers are reused

in different procedures, which greatly reduces the amount of storage needed

for a witness, then the second approach becomes even more complicated. (If a

separate trace file were maintained for each procedure, then all of these

problems would disappear, and extending tracing to multiple procedures

would be quite straightforward. However, this solution is not practical for

anything but toy programs, for obvious reasons.)

Our solution places “blocking” witnesses on some edges of the paths from a

predicate to a call site and from a predicate to the EXIT vertex. This ensures

that whenever the regeneration procedure is in CFG G and reads a witness

to determine which branch of a predicate to take, the witness will have been

generated by an edge in G.4

Definition. The set Ewit has the blocking property for CFG G iff there is

no predicate p in G such that there is a witness-free directed path from p to

the EXIT vertex or to a vertex containing a call.

Definition. The set {Ewitl,... , Ewitmj solves the tracing problem for a set

of CFGs {Gl, ..., Gn} iff, for all i, Ewitl solves Trace(Ewit,) for G, and EwitL

has the blocking property for G,.

The regeneration algorithm in Figure 15 need only be modified to maintain

a stack of currently active procedures. When the algorithm encounters a call

vertex, it pushes the current CFG name and pe value onto the stack and

starts executing the callee. When the algorithm encounters an EXIT vertex,

it pops the stack and resumes executing the caller.

An easy way to ensure that Ewit has the blocking property is to include

each incoming edge to a call or EXIT vertex in Ewit. Figure 16 illustrates

why this approach is suboptimal. The shaded vertices (B, 1, and H) are call

vertices. In the first subgraph, a blocking witness is placed on each incoming

edge to a call vertex (block dots). In addition, a witness is needed on edge
B e D (white dot). This placement is sl.lboptirnal because the witness on edge

~ - I is not needed and because the witnesses on edges B ~ D and G s 1

(with cost = 3) can be replaced by witnesses on edges B * D and B A E

(with cost = 2). In the second subgraph, blocking witnesses are placed as far
from call vertices as possible, resulting in an optimal placement.

4 In some tracing applications, data other than witnesses (such as addresses) are also written to

the trace file. Vertices in the CFG that generate addresses can be blocked with witnesses so that

no address is ever mistakenly read as a witness. It would also be feasible in this situation to

break the trace file into two tiles, one for the witnesses and the other for the addresses, to avoid

placing more blocking witnesses.

ACM Transactions on Programming Languages and Systems, Vol 16, No 4, July 1994.

1342 . T, Ball

J4

and J R, Larus

~4

‘4
cost = 9

blockers(B) = {A->B]

blockers = (B-> D, B->q
C-> F, C->H]

blockers(H) = {C-> F, C->H]

t4
CO$t= 6

Fig. 16. Two placements of blocking witnesses: A suboptlmal placement and an optimal

placement.

Consider a call vertex v and any directed path from a predicate p to u such

that no vertex between p and u in the path is a predicate. For any weighting

of G, placing a blocking witness on the outgoing edge of predicate p in each

such path has a cost equal to placing a blocking witness on each incoming

edge to u (since no vertex between p and u is a predicate). However, placing

blocking witnesses as far away as possible from u ensures that no blocking

witnesses are redundant. Furthermore, placing the blocking witnesses in this

fashion increases the likelihood that they solve l’hzee(Ezuit).

In general, it is not always the case that a blocking witness placement will

solve Trace(Ewit). Therefore, computing Ewit becomes a two-step process:

(1) Place the blocking witnesses, and (2) ensure that Trace(Ewit) is solved by

adding edges to Ewit. The details of the algorithm follow:

Definition. Let u be a vertex in CFG G. The blockers of u are defined as
follows:

blockers(G, u)

= {p + X. lthere is a path p * XO * ““” - x. where p is a predicate,

v =Xn, and, for O < i < n, x, is not a predicate}.

First, for each vertex v that is a call or EXIT vertex, all edges in

blockers(G, v) are added to Ewit (which is initially empty). To ensure that
Ewit solves Trace(Ewit), we must add additional edges to Ewit so that

E – Ewit contains no diamonds or directed cycles. The maximum spanning-
tree algorithm can be modified to add these edges. No edge that is already in

Ewit is allowed in the spanning tree .5 Edges that are not in the spanning

tree are added to Ewit, which guarantees that Ewit solves Trace(Ewit).

5 The modified spanning-tree algorithm may not actually be able to create a spanning-tree of G

because of the edges already in Ewut. In this case the algorithm simply identifies the maximal-cost

set of edges in E – Ewzt that contains no (undirected) cycle.

ACM Transactions on Programming Languages and Systems, Vol. 16, No, 4, July 1994,

Optimally Profiling and Tracing Programs . 1343

cost = 15

(a)

D
1

6 4

6 49
&

5 5

5 5

cost = 20

(b)

Fig. 17. Ordering of blocking witness placement
and spanning-tree placement affects optimality.

Applying this algorithm to the control-flow fragment in Figure 17a, the

blocking phase adds the black-dot edges to Ewit. The spanning-tree phase

adds the white-dot edge to Ewit.

One might question whether it is better to reverse the above process

and fh-st compute an Ewit that solves l’race(Ewit), using the maximum

spanning-tree algorithm, and to add blocking witnesses as needed afterward.

Figure 17b shows that this approach can yield undesirable results. The black

dot edges are placed by the spanning-tree phase and solve Trace(Ewit), but

do not satisfy the blocking property. The white-dot edge must be added to

satisfy the blocking property and creates a suboptimal Ewit.

5. A HEURISTIC WEIGHTING ALGORITHM

In order to profile or trace efficiently, instrumentation code should be placed

in areas of low execution frequency. It may appear that to find areas of low

execution frequency requires profiling. However, structural analysis of the

CFG can often accurately predict that some portions are less frequently

executed than others. This section presents a simple heuristic for weighting

edges, based solely on control-flow information. As shown in Section 6, this

simple heuristic is quite effective in reducing instrumentation overhead. The

basic idea is to give edges that are more deeply nested in conditional control

structures lower weight, as these areas will be less frequently executed. In

general, every path through a loop requires instrumentation. However, within

a loop containing conditionals, we would still like instrumentation to be as

deeply nested as possible. For the CFG in Figure 18, the heuristic will

generate the weighting shown in (a). Any weighting of a CFG (i.e., edge

frequencies satisfying Kirchoffs flow law) that assigns each edge a nonzero

weight will give edges that are more deeply nested lower weights. As dis-
cussed in Section 7, there are expensive matrix-oriented methods for generat-

ing weighings. Our heuristic has the advantage that it requires only a

depth-first search and topological traversal of the CFG.

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No. 4, July 1994.

1344 . T. Ball and J, R. Larus

if (

@

P
0.5

0.5
Q

0.25 025

R

0.125 0.125
x

Em- 0375

P&&
x;

(QIIR ~))

@

5P

5
s Q4

4
4

3R3

X2
3

2

I

6

(a) (b)

Fig, 18 Program fragment (a) Its control-flow graph with a weighting satisfying Ku-choffs

flow, and an optimal edge counter placement (black dots). (b) Weighting derived using a

postorder numbermg of vertices (an edge’s value is the postorder number of its source vertex),

and the suboptimal placement that results from finding a maximum spanning tree with respect

to this weighting,

The heuristic has several steps. First, a depth-first search of the CFG from

its root vertex identifies backedges in the CFG. The heuristic uses a topologi-

cal traversal of the backedge-free graph of the CFG to compute the weighting.

The heuristic uses natural loops to identify loops and loop-exit edges [Aho et

al. 1986]. The natural loop of a backedge x + y is defined as follows:

nat_loop(x * y)

= {y} U {w I there is a directed path from w to x that does not include y}.

A vertex is a loop-entry if it is the target of one or more backedges. The

natural loop of a loop-entry y, denoted by nat–loop(y), is simply the union of

all natural loops nat–loop(x + y), where x ~ y is a backedge. If a and b are

different loop-entry vertices, then either nat-loop(a) and nat-loop(b) are

disjoint, or one is entirely contained within the other. This nesting property is
used to define the loop-exit edges of a loop with entry y:

loop_exits(y) = {a - b = E I a ● nat-loop(y) and b G nat-loop(y)}.

Edge a + b is a loop-exit edge if there exists a loop-entry y such that

a + b = loop–exits(y).

The heuristic assumes that each loop iterates LOOP–MULTIPLIER times

(for our implementation, 10 times) and that each branch of a predicate is

equally likely to be chosen. Loop-exit edges are specially handled, as de-

scribed below. The weight of the edge EXIT ~ root is fixed at 1 and does not

change. The edge EXIT - root is not treated as a backedge, even though it is

identified as such by depth-first search. The following rules describe how to

compute vertex and edge weights:

(1) The weight of a vertex is the sum of the weights of its incoming edges that
are not backedges.

ACM Transactions on Programmmg Languages and Systems, Vol 16, No, 4, July 1994,

Optimally Profiling and Tracing Programs . 1345

(2) If vertex u is a loop-entry with weight W and if N = Iloop -exits(u)], then
each edge in loop _exits(u) has weight WIN.

(3) If u is a loop-entry vertex, then let W be the weight of vertex u times
LOOP-MULTIPLIER; otherwise, let W be the weight of vertex u, If WE

is the sum of the weights of the outgoing edges of u that are loop-exit

edges, then each outgoing edge of u that is not a loop-exit edge has

weight (W – WE)/N, where N is the number of outgoing edges of u that

are not loop-exit edges.

The rules are applied in a single topological traversal of the backedge-free

graph of a CFG. An edge (possibly a backedge) is assigned a weight by the

first rule that applies to it in the traversal as follows: When vertex v is first

visited during the traversal, the weights of its incoming nonbackedges are

known. Rule (1) determines the weight of vertex U. If vertex u is a loop-entry,

then rule (2) is used to assign a weight to each edge in loop _exits(u). Finally,

rule (3) determines the weight of each outgoing edge of u that is not a

loop-exit edge.

6. PERFORMANCE RESULTS

This section describes several experiments that demonstrate that the algo-

rithms presented above significantly reduce the cost of profiling and tracing

real programs. Sections 6.1 and 6.2 discuss the performances of the profiling

and tracing algorithms, respectively. Section 6.3 considers some optimiza-

tion that can further decrease the overhead of profiling and tracing. Section

6.4 examines the effectiveness of the heuristic weighting algorithm.

6.1 Profiling Performance

We implemented the profiling counter placement algorithm in qpt [Larus

1993], which is a basic-block profiler similar to MIPS’s pixie [MIPS Computer

Systems 1990]. Qpt instruments object code and can insert counters either in

every basic block in a program (redundant mode) or along the subset of edges

identified by the spanning-tree algorithm (optimal mode).

We used the SPEC benchmark suite to test qpt [Mendoza 1989], This is a

collection of 10 moderately large FORTRMN and C programs that is widely

used to evaluate computer system performance. The programs were compiled

at a high level of optimization (either -02 or -03, which does interprocedural

register allocation). However, we did not use the MIPS utility cord, which

reorganizes blocks to improve cache behavior, or interprocedural delay slot

filling. Both optimizations confuse a program’s structure and g-eatly compli-

cate constructing a control-flow graph. Timings were run on a DE Citation

5000/200 with local disk and 96MB of main memory. Times were elapsed

times.

Table I describes the 10 benchmarks and shows the size of the object files

and the time required to insert profiling code in redundant and optimal mode

(keep in mind that qpt has not been tuned, because its current speed is more
than adequate for most executable encountered in practice). As can be seen,

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1346 . T, Ball and J. R. Larus

Table I. SPEC Benchmarks

SPEC Size Redundant Optimal Increase

benchmark Description (bytes) (s) (s) (opt. /red.)

ccl (c)

espresso (C)

xhsp (c)
eqntott (C)
Spice

doduc

dnusa7

matrix300

fiPPP

tomcatv

C compiler 1,075,840 9.2 12.4 1.35

PLA minimization 298,032 22 29 1.32

Lisp interpreter 175,920 3.8 4.8 1.27

Boolean equations to truth table 94,924 1.9 2.5 1.32

Circuit simulation 551,836 1,1 14 1.27

Monte Carlo hydrocode simulation 280,940 1.9 2.5 1,32

Floating-point kernels 162,996 1,1 1.4 1.27

Matrix multlply 122,440 0.9 1.1 122

Two-electron integral derivative 254,720 1.7 2.1 1.24

Vectorized mesh generation 125,316 08 1,1 1.38

Size of input object files and times for instrumenting program for redundant and optimal

profiling The first four programs are C programs. The remainder are FORTRAN programs

II

m Unlnstr.mented
D f7.d..clant
~ plxle

m Optimal

1-.:>
~..- ~%! -s

~ra -s’- #-& ++’”” ~.~+’ +’+ .+-$= e-i- @=+%?~% b“ e“’ <O

Fig, 19. Normalized urofilimz execution times. For redundant urofilimz, u~t inserts a counter in-. ..
each basic block (vertex). For optimal profiling, gpt inserts a counter along selected edges

(Eprof(Ecnt)). l%ue m a MIPS utlhty that inserts a counter in each basic blOCk.

instrumenting for optimal profiling is slightly (22–38 percent) slower than

instrumenting for redundant profiling. This is due to the extra work to find

the loops in a CFG and to compute a weighting to drive the maximum

spanning-tree algorithm. In practice, this extra instrumentation overhead is
quickly regained from the reduction in profiling overhead.

Figure 19 shows the (normalized) execution time of the benchmarks with-

out profiling, with qpt redundant profiling, with pixie profiling (which

ACM Transactions on Programmmg Languages and Systems, Vol 16, No. 4, July 1994.

Optimally Profiling and Tracing Programs . 1347

5.0

0 R.cl..ti.n i. In.r.rn..ts

4.0

t (5.4)

0.0 1

1

(12.4)

.

‘30”5)(46.5

7

1
,,
$’,,,//
{

f’.
.7

,;/

.;,.

.,:<,

“, (57.6
,

‘/
,./j/,

{,<
,/
,:<
,)+
.;
:.
?.,
,:,,
/,

:, ,“, 1
/:+,:<

,’;>
‘<y
/! ,.
.,,,,,
;.:;

‘: ,?
...
?
,x,,

‘!

Fig. 20. Reduction in counter increments and instrumentation instructions due to optimized

counter placement, as guided by the heuristic weighting described in Section 5. Reduction in

increments is (number of counter increments for redundant profiling/number of counter incre-

ments for optimal profiling). Reduction in instrumentation is (5 ~ number of basic blocks)/

(5* increments + number of extra jumps). The average dynamic basic-block size (in instructions)

for each program is shown in parentheses.

inserts a counter in each basic block), and with qpt optimal profiling. Pixie

rewrites the program to free three registers, which enables it to insert a code

sequence that is almost half the size of the one used by qpt (6 instructions vs.

11 instructions). Of course, pixie may have to insert spill code in order to free

registers.

As can be seen from Figure 19, optimal profiling reduces the overhead of

profiling dramatically over redundant profiling, from 10-225 percent to 5-91

percent. These timings are affected by variations in instruction and data

cache behavior caused by instrumentation. We measured profiling improve-

ment in another way that factors out these variations. Figure 20 records the

reduction in counter increments in going from redundant to optimal profiling

(i.e., the number of counter increments in redundant mode/the number of

increments in optimal mode). Figure 20 also records the reduction in the
number of instrumentation instructions executed (assuming five instructions

for a counter increment and one instruction for an unconditional branch for

the edge profiling code). In general, this reduction is less than the reduction

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1348 . T. Ball and J. R. Larus

in counter increments, since edge profiling may require the insertion of

unconditional jumps.

Fortunately, the greatest improvements occurred in programs in which

profiling overhead was largest, since these programs had more conditional

branches and more opportunities for optimization. For programs that fre-

quently executed conditional branches, the improvements were large. For the

four C programs (ccl, espresso, xlisp, and eqntott), the placement algorithm

reduced the number of increments by a factor of 3–4, and the overhead by a

factor of 2–3. For the FORTRAN programs, the improvements varied. In

programs with large basic blocks that execute few conditional branches

(where profiling was already inexpensive), improved counter placement did

not have much of an effect on the number of increments or on the cost of

profiling. The FORTRAN program doduc, although it has a dynamic block

size of 12.4 instructions, has “an abundance of short branches” [Mendoza

1989] that accounts for its reduction in counter increments. The decrease in

run-time overhead for doduc was substantial (38 percent to 5 percent). The

fpppp benchmark produced an interesting result. While it showed the largest
reduction in counter increments, the overhead for measuring every basic

block was already quite low at 18 percent and the average dynamic basic-block

size was 103.5 instructions. This implies that large basic blocks dominated its

execution. Thus, even though many basic blocks of smaller size executed

(yielding the dramatic reduction in counter increments), they contributed

little to the running time of the program.

Figure 21 compares the reduction in dynamic instrumentation overhead for

the Eprof(Ecnt) algorithm (optimal profiling), the Vprof(Ecizt) heuristic, and

Knuth and Stevenson’s Vprof(Vcnt) algorithm [Knuth and Stevenson 1973],

as compared to redundant profiling (measure at every vertex). All algorithms

used the same weighting to compute a counter placement. Given a counter

placement for one of the algorithms, we used the profile information collected

from a previous run to determine how many times each counter would have

been incremented and how many extra jumps would have been needed

(Vprof(Vent) does not require extra jumps, since counting code is placed on

vertices). By doing so, we avoided instrumenting and running the programs

for every algorithm, while still collecting accurate results. For all the bench-

marks, Eprof(Ecnt) is superior to Vprof(Vent), producing a greater reduction

in instrumentation instructions, as predicted. The heuristic for Vprof(Ecnt)

yields almost no improvement over Eprof(Ecnt), as there are very few cases
when a counter can be eliminated.

Table II provides statistics on the number of edges in each program (“Total

edges”), the number of edges that had counting code placed on them using the

spanning-tree algorithm (“Profiled edges”), and the number of profiled edges

that did not require the insertion of an unconditional jump (“No-jump edges”).

We make two observations. First, notice that the percentage of all edges that

are profiled is in the narrow range of 39–46 percent. This is consistent with

the facts that most CFGS have almost (but not quite) twice as many edges as

vertices and that the number of edge counters required for edge profiling is

ACM Transactions on Programming Languages and Systems, Vol 16, No 4, July 1994,

Optimally Profiling and Tracing Programs . 1349

1
,,:,,.,:.,:::,:,

Fig. 21. Comparison of instrumentation reduction of Eprof(Ecnt), Vprof(Ecnt), and

Vprof(Vcnt). The larger a plot, the better (i.e., the greater the reduction of instrumentation code),
Instrumentation reduction =(5. basic blocke)/(5 *increments +number ofextrajumps).

Table II. Static Statistics on Control-l?low Edges

Profiled edges No-jump edges

Total Percent Percent

Program edges Number of total Number of profiled

ccl 48,398 20,577 43 10,533 51
espresso 11,059 4,540 41 2,426 53
xlisp 4,813 2,207 46 1,264 57
eqntott 3,095 1,296 42 756 58

spzce 15,145 5,888 39 3,131 53

doduc 7,957 3,128 39 1,672 53

dncisa7 5,517 2,274 41 1,241 55
matrlx300 4,744 1,969 42 1,116 57

l%PPP 7,042 2,887 41 1,630 56

tomcatu 4,661 1,923 41 1,099 57

“Total edges” shows the total number of control-flow graph edges in each program. “Profiled

edges” shows the number of edges that had counters placed on them using the spanning-tree

algorithm. “No-jumpedges” shows the number of profiled edges that do not require the insertion

of an unconditional jump.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1350 . T Ball and J. R. Laws

IE/ – ([VI – 1).Second, less than half of all profiled edges require the inser-

tion of an unconditional jump.

6.2 Tracing Performance

The witness placement algorithm was implemented in the AE program-

tracing system [Larus 1990], which has since been incorporated as part of the

qpt tool. AE originally recorded the outcome of each conditional branch and

used this record to regenerate a full control-flow trace. One complication is

that AE traces both the instruction and data references, so a trace file

contains information to reconstruct data addresses as well as the witnesses.

Combining this information in one file requires additional blocking witnesses,

as described in Section 4.2

Table III shows the reduction in total file size (“File”), witness trace size

(“Trace”), and execution time that result from switching the original algo-

rithm of recording each conditional (“Old”) to the witness placement de-

scribed in Section 4 (“New”). As with the profiling results, the programs with

regular control flow, sgefa and pdp, do not gain much from the tracing

algorithm. For the programs with more complex control flow, compress and

polyd, the tracing algorithm reduced the size of the trace file by factors of 3

and 2.7 times, respectively.

In the discussion of tracing, we have assumed that a standard representa-

tion has been used for witnesses (per CFG). In modern architectures it is

convenient for this representation to be a multiple of a byte. Thus, it is often

the case that we record more bits per witness than necessary. We explored

another method for tracing, called bit tracing, which seeks to reduce the size

of the trace. With bit tracing, each outgoing edge of a predicate vertex

generates a witness, and witness values are reused. For a predicate with two

successors, only one bit of information is required to distinguish its witness

sets. In general, a predicate with N successors requires Iogz N bits. Figure

22 illustrates the trade-off between the spanning-tree approach and bit

tracing. In Figure 22a witnesses are placed according to the spanning-tree

approach. No pair of distinct witnesses from the set {a, b, c, d} can be

assigned the same value, so two bits per witness are required. In Figure 22b

only one bit per witness is required. Any iteration of the loop in this CFG will

generate three bits of trace. However, in Figure 22a the amount of trace

generated per iteration can be either two or four bits. In this example, neither

witness placement is a clear winner.
If compared to the spanning-tree approach that naively uses a byte (or

more, if needed) of storage per witness, bit tracing is clearly superior.

Although more instrumentation code is executed, less trace is generated,

which reduces 1/0 overhead. This method decreases the size of the trace 3–7

times over the spanning-tree approach. However, as shown in Figure 22, by

using only as many bits as necessary, the spanning-tree approach can be

improved. In this example, two bits per witness are needed. In general, if

there are N witnesses for a CFG then at most logz N bits per witness are

needed. However, there are situations where witness values can be reused,

ACM Transactions on Programming Languages and Systems, VOI 16, No, 4, July 1994

1352 . T. Ball and J. R Larus

@

a b

c

rd

(a)

a=OO

b=Ol

C=lo

d=ll

X=O

y=l

x
t

(b)

Fig, 22. Trade-off between (a) placing witnesses according to the spanning-tree approach and

(b) placing witnesses on every outgoing edge of a predicate vertex.

possibly decreasing the number of bits needed. This is complicated by the fact

that different placements of witnesses may give rise to different opportunities

for the reuse of values. Further investigation in optimizing the spanning-tree

approach is clearly needed.

Bit tracing avoids the multiprocedure tracing problem discussed in Section

4.2, as there is no witness-free directed path from a predicate to a call vertex.

If an address trace also is generated from the program, bit tracing requires

that two separate files be maintained (for efficiency), one for the instruction

trace and one for the address trace. The cost of bit tracing is the additional

implementation complexity required to manage witnesses at the bit level.

6.3 Optimization

Several optimizations can further decrease the overhead of profiling and

tracing. The first optimization, register scaz,enging, is specific to instrument-

ing object code. For RISC machines, counter increment code requires two

registers, one to hold the counter’s address (because addressing on RISC

machines is done by indirection off of a register) and one to hold the counter’s

value. If both registers need to be saved and restored (to preserve their

values), the instrumentation code jumps from 5 to 11 instructions. Register

scavenging notes the unused caller-saved registers in a procedure. These
registers can be used by instrumentation code without preserving their

values, since the procedure’s callers expect these registers to be modified.G

For many of the benchmarks, specifically, the FORTRAN programs with

large basic blocks and few unused registers, register scavenging had little

effect on execution overhead. For other benchmarks, the results varied from

6 We discuss the problems of register scavenging and instrumenting object files m greater detail

elsewhere [Larus and Ball 1994].

ACM Transactions on Programmmg Languages and Systems. Vol 16, No 4, July 1994

(a)

Optimally Profiling and Tracing Programs . 1353

%

Fig. 23. (a) Placement requiring in-

sertion of jump. (b) No jumps required.

(b)

small reductions of a few percent to larger reductions in the range of 6–21

percent.

The second optimization can substantially reduce profiling overhead by

removing counters from loops. If the number of iterations of a loop can be

determined before the loop executes or from an induction variable whose

value is recorded before and after the loop, then a counter can be eliminated

from the loop body (allowing one counter-free path through the loop). Both

Sarkar and Goldberg have successfully implemented this approach in profil-

ing tools [Sarkar 1989; Goldberg 1991]. For example, Goldberg reports that

for eqntott the reduction in increments (redundant/optimal profiling) in-

creased from 4.3 to 7,7, after adding induction variable analysis. Some

scientific codes benefited greatly from this analysis (a 33-fold decrease in

instrumentation code executed for rnatrix300). However, for pointer-chasing

programs such as xlisp the benefits of this analysis were quite small, as few

induction variables are present in such programs.

As mentioned before, placing instrumentation code on edges may require

the insertion of jumps, to avoid executing other instrumentation code. For

example, in the control-flow fragment of Figure 23a there are two instru-

mented incoming edges to a vertex. Because we use the general rule that the

instrumentation code associated with an edge is placed just before the code

associated with the vertex that is the target of the edge, this fragment will

require at least one unconditional jump (in order to jump over the instrumen-

tation code associated with the other edge). However, the gray vertex has

only one incoming edge and only one outgoing edge, so the instrumentation

point can be moved from its outgoing edge to its incoming edge, resulting in

the placement in Figure 23b. This placement may require no extra jumps

(unless the gray vertex’s outgoing edge is a fall-through). Jump optimization

searches for vertices with one incoming and one outgoing edge, with instru-

mentation code on the outgoing edge. The instrumentation code is simply

moved to the incoming edge. This simple optimization may reduce (and will

never increase) the number of extra jumps needed. In the case of xlisp, this

optimization reduced execution overhead by 10 percent.

6.4 Effectiveness of the Heuristic Weighting Algorithm

The effectiveness of the heuristic weighting algorithm was measured in two

ways, as presented in Figure 24. First, we measured the reduction in counter

increments (number of increments in redundant modeinumber of increments

ACM Transactions on Programming Languages and Systems, Vol 16, No 4. July 1994.

1354 . T, Ball and J R Larus

D Exact-Max

D Heuristic-Max

D Heuristic-Min

W Exact-Mln

Fig. 24. Heuristic weighting versus exact weighting: Reductions in increments (redundant/

optimal) are computed for counter placements from both maximum and minimum spanning

trees.

in optimal mode) using an exact edge weighting from a previous run of the

same program with identical input. This number, “ Exact-Max,” represents

the best one could hope to do without semantics-based optimizations (such as

induction variable analysis). Second, for both the heuristic and exact weighi-

ngs, we also computed what the reduction in increments would be if a

minimum spanning tree were used to place counters. Whereas the maximum

spanning tree places counters in less frequently executed areas of the CFG, a

minimum spanning tree places counters in more frequently executed areas,

Thus, “Exact-Min” is the worst possible reduction for the spanning-tree

algorithm. As the difference between “Exact-Min” and “Exact-Max” shows,

there is great variation in the reduction in counter increments, depending on

which spanning tree is chosen. The heuristic is clearly successful at predict-

ing areas of low execution frequency, as shown by “Heuristic-Max.” Also, note
that “Heuristic-Max” always produced a greater reduction than “Heuristic-

Min.” The difference in reduction between the heuristic and exact weighings

was usually small (ranging from 1 to 34 percent). Not surprisingly, the

heuristic was quite accurate for the FORTRAN programs with few condi-

tional branchs.

Figure 25 shows the normalized times for the benchmarks run under

optimal profiling for the heuristic weighting (corresponds to “Heuristic-Max”

in Figure 24) and exact weighting (corresponds to “Exact-Max” in Figure 24).

In one case (fpppp), the run time with the exact weighting is greater than

ACM Transactions on Programming Languages and Systems, Vol 16, No 4, July 1994

Optimally Profiling and Tracing Programs .

D Unlnstrumented

m OPtlmal-Heurlstlc

~ Optimal-Exact

Fig. 25, Normalized profiling times for heuristic and exact weighings.

the run time with the heuristic weighting. Such an aberration is most likely

due to different instruction and data cache behavior of the instrumented

program under the different counter placements, and requires further inves-

tigation.

The heuristic weighting algorithm assumes that each branch of a predicate

is equally likely to be chosen. For most programs, varying this probability

does not have a great effect on instrumentation overhead. However, weight-

ing schemes that attempt to pick likely branch directions independently may

have greater success. For example, favoring edges leading to blocks contain-

ing loops (which have a high dynamic cost) reduces instrumentation overhead

for a few of the benchmarks.

7. RELATED WORK

7.1 Edge Profiling

The spanning-tree solution to Epro~(Ecnt) has been known for a long time.

In the area of network programming, the problem is known as the special-

ization of the simplex method to the network program [Kensington and

Helgason 1980]. Knuth [1973] described how to use the spanning tree for

profiling. Other authors who have written about the application of the

spanning tree to profiling include Goldberg [1991], Samples [1991], and

ACM TransactIons on Programming Languages and Systems, Vol. 16, No, 4, July 1994,

1356 . T, Ball and J. R. Larus

Probert [1975]. As far as we know, Goldberg and Samples are the only other

researchers who implemented the spanning-tree approach and performed

significant experimentation with real programs. Their work occurred concur-

rently with ours.

Goldberg [199 1] implemented edge profiling by instrumenting executable

files. His profiler was built as part of a system to analyze the memory

performance of programs [Goldberg and Hennessy 1993]. Goldberg optimized

his instrumentation in two ways that we do not consider. First, his tool

selected the two statically least-used registers in the executable and elimi-

nated all uses by inserting loads and stores around existing uses of these

registers. This allows every counting code sequence to use these registers

without saving and restoring them, A similar approach is used by MIPS’s

pixie profiling tool [MIPS Computer Systems 1990]. As a result, the number

of instructions needed to increment a counter in memory can be cut roughly

in half. Our tool only looks for free registers to scavenge and often must save

and restore registers in the counter increment code sequence. Second, Gold-

berg identifies simple loop induction variables. This allows a counter to be

eliminated from a loop (because the number of iterations can be inferred from

the beginning and ending values of the induction variable), lowering instru-

mentation overhead drastically for scientific codes. Our tool does not perform

this optimization.

Samples [1991] considered a refinement that takes into account the uncon-

ditional jump that may have to be inserted when placing a counter on an

edge. His algorithm placed counters on a mixture of edges and vertices to

reduce the number of unconditional jumps as well as the number of counter

increments. His approach is useful for architectures in which the cost of an

unconditional jump is comparable to the cost of incrementing a counter in

memory. However, as mentioned before, Samples’ results show that the

overhead incurred by mixed placements did not differ much from edge

placements.

Probert [1975] discussed solving Eprof(Vent), which is not always possible

in general. Using graph grammars, he characterized a set of” well-delimited”

programs for which Eprof(Vcnt) can always be solved. This class of graphs

arises by introducing “delimiter” vertices into well-structured programs.

Probert discussed how to find a minimal number of vertex measurement

points as opposed to a minimal-cost set of measurement points.

Sarkar [1989] described how to choose profiling points using control depen-

dence and implemented a profiling tool for the PTRAN system. His algorithm

found a minimum-sized solution to Eprof(Ecnf) based on a variety of rules

about control dependence, as opposed to the spanning-tree approach. There

are several other major differences between his work and our work: (1) His

algorithm only works for a subclass of reducible CFGS. (2) His algorithm does

not use a weighting to place counters at points of lower execution frequency.

As a result, the algorithm may produce suboptimal solutions. (3) When the

bounds of a DO loop are known before execution of the loop, his algorithm

eliminates the loop iteration counter, as done by Goldberg.

ACM TransactIons on Programming Languages and Systems, Vol 16, No 4. July 1994.

Optimally Profiling and Tracing Programs . 1357

7.2 Vertex Profiling

Knuth and Stevenson [1973] characterized when a set of vertices Vent solves

V’rof(Vcrzt) and showed how to efficiently compute a minimum-size Vent

that solves Vprof(Vcnt). The authors noted that their algorithm can be

modified to compute a minimum-cost solution to Vprof(Vcnt), given a set of

measured or estimated vertex frequencies. Our work has shown that it is less

costly to measure vertex frequency by instrumenting edges rather than

vertices.

7.3 Tracing

Ramamoorthy et al. [1975] considered how to instrument a single-procedure

program with a minimal number of monitors, so the traversal of any directed

path through the program may be ascertained after an execution. This is

equivalent to the tracing problem for single-procedure programs discussed

here. The authors did not give an algorithm for reconstructing an execution

from a trace or consider how to trace multiprocedure programs. Furthermore,

they were interested in finding a minimal-size solution to the tracing prob-

lem, an NP-complete problem [Maheshwari 1976]. However, a minimum-size

solution does not necessarily yield a minimum-cost solution.

7.4 Minimizing Instrumentation Overhead

A CFG has many spanning trees, each of which induces a counter placement

with an associated run-time overhead cost. Section 5 has presented our

heuristic for estimating edge frequency that drives the maximum spanning-

tree algorithm. This section compares our heuristic to other methods for

minimizing instrumentation overhead (which may include methods for esti-

mating frequency). We use the CFG in Figure 18a as a basis for comparing

the various heuristics discussed. The weighting of this CFG satisfies the flow

law, and the edges with black dots are an optimal edge counter placement for

profiling (with respect to this weighting). The other edges form a maximum
spanning tree. As mentioned before, our heuristic generates the weighting in

Figure 18a.

Forman [1981] discussed the problem of minimizing counter overhead with

the spanning-tree approach from a graph theoretic perspective. He defined a

partial order on the spanning trees of a CFG such that for any weighting if a

spanning tree T is not a least element in the partial order then there is some

spanning tree lower in the order that induces a counter placement with a

lower cost than the one induced by T. Of course, there maybe more than one

least element in the partial order. The spanning tree in Figure 18a is a least

element. Forman proposed a structural method for computing a least ele-

ment, but it works only for structured CFGS. Our heuristic works for any

CFG. He also proposed a more general solution that generates a weighting,

given branch probabilities for the predicate vertices in any CFG. A maximum

spanning tree found under a weighting is a least element in Forman’s partial

order. To generate the weighting requires matrix operations on what are

essentially adjacency matrix representations of the CFG. As such, this gen-

ACM TransactIons on Programming Languages and Systems, Vol 16, No 4, July 1994

1358 . T. Ball and J. R, Larus

eral approach would be much slower than our heuristic, which operates

directly on the control-flow graph structure. Our heuristic generates edge

frequencies satisfying the flow law and can easily be adapted to take branch

probabilities into account.

Goldberg [1991] developed a heuristic for his profiling tool that uses a

postorder numbering of the vertices in the CFG (as determined by a depth-first

search from the root vertex) to assign edge weights. He defined an edge’s

weight to be the postorder number of its source vertex. However, if an edge is

a loop backedge then it is given a weight larger than the number of vertices

in the graph. The rationale for this heuristic is that “a node always executes

at least as many times as any of its descendants [successors]; hence, it seems

best to place counters on nodes as far from the root as possible.” This

heuristic clearly does not produce a weighting satisfying the flow law, as

Figure 18b shows. Because the distance of an edge from the root vertex does

not always correspond to that edge’s level of nesting, Goldberg’s heuristic will

not always lead to the best counter placements. In the example of Figure 18b,

the maximum spanning tree for the given weighting induces a suboptimal

counter placement.

Wall [1991] experimented with a number of heuristics for estimating

basic-block and procedure profiles solely from program text, reporting poor

results. Wall’s heuristics used information about loop nesting and call-graph

structure to predict basic-block and procedure profiles, but did not take into

account conditional control flow (i.e., predicting that code that is more deeply

nested in conditionals is executed less frequently), as our heuristic does, It is

this aspect of our heuristic that is key to reducing instrumentation overhead

(this is also the main idea behind Forman’s partial order). With Wall’s
heuristic, every basic block nested in the same number of loops gets equal

weight. In the example graph of Figure 18, each block would get equal

weight, which is clearly not useful for the purposes of minimizing instrumen-

tation cost.

Other authors have presented heuristics that are similar to ours, usually

for the purpose of aiding code optimization. For example, Fisher et al. [1984]

used loop-nesting-level and programmer-supplied hints to estimate block

execution frequency for trace scheduling. However, few of these heuristics

have the goal of producing edge frequencies satisfying the flow law.

None of the heuristics mentioned above or our heuristic attempts to predict

branch directions. If branches can be accurately predicted, then instrumenta-

tion code can be placed on the less frequently executed branch when a choice
is possible. More recent work on branch prediction by Ball and Larus [1993]

could be used in this application.

8. CONCLUSIONS

This paper has studied algorithms for efficiently profiling and tracing pro-

grams. These algorithms optimize placement of instrumentation code with

respect to a weighting of the control-flow graph. Empirical results on real

programs show that these algorithms are successful in reducing instrumenta-

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 4, July 1994

Optimally Profiling and Tracing Programs . 1359

tion overhead. Placing instrumentation code along edges in the control-flow

graph is essential to reduce both profiling and tracing overhead. However,

several open questions remain: (1) Is there an efficient algorithm to optimally

solve the vertex frequency problem with a set of edge counters, or is the

problem intractable? (2) Are there better weighting schemes that can more

accurately guide the placement of instrumentation code?

ACKNOWLEDGMENTS

We would like to thank Susan Horwitz for her support of this work. Gary

Schultz and Jonathan Yackel provided valuable advice on network program-

ming. Bob Meyer helped to characterize the Vprof(Ecnt) problem. Samuel

Bates, Paul Adams, and Phil Pfeiffer critiqued many descriptions of the work

in progress. Chris Fraser suggested the bit tracing approach, which was

implemented by Guhan Viswanathan. Thanks also are due to Guri Sohi and

Tony Laundrie, who provided their code for a basic-block profiler that as-

sisted the development of qpt, and to Mark Hill, who provided the disk space

and computing resources for the performance measurements.

REFERENCES

AHO, A., SETHI, R., AND ULLMAN, J. 1986. Compilers: Principles, Techniques and Tools. Addi-

son-Wesley, Reading, Mass.

BALL, T., AND LARUS, J. R. 1992. Optimally profiling and tracing programs. In Conference

Record of the 19th ACM Symposium on Principles of Programming Languages (Albuquerque,

N. M., Jan. 19-22). ACM, New York, 59-70.

BALL, T.j AND LARUS, J. R. 1993. Branch prediction for free. In Proceedings of the ACM

SIGPLAN 93 Conference on Programming Language Des~gn and Implementat~on. SIGPLAN

Not. (ACM) 28, 6 (June), 300-313.
CHOI, J. D., MILLER, B. P., AND NETZER, R. H. B. 1991. Techniques for debugging parallel

programs with flowback analysis. ACM Trans. Program. Lang. Sysf. 13, 4 (Oct.), 491-530.
CMELIK, R. F.j KONG, S. I., DITZEL, D. R., AND KELLY, E. J. 1991. An analysis of MIPS and

SPARC instruction set utilization on the SPEC benchmarks. In ASPLOS-IV Proceedings.

SIGARCH Comput. Arch. News 19, 2 (Apr.), 290-302.

FISHER, J. A., ELLIS, J, R., RUTTENBERG, J. C., AND NICOLAU, A. 1984. Parallel processing A

smart compiler and a dumb machine. In Proceedings of the ACM SIGPLAN 1984 Symposium

on Compiler Construction. SIGPLAN Not. (ACM) 19, 6 (June), 37–47.
FORMAN, I. R. 1981. On the time overhead of counters and traversal markers. In Proceedings

of the 5th International Conference on Software Engineering (San Diego, Calif., Mar. 9– 12).

IEEE Computer Society, Washington, D. C., 164-169.

GAREY, M. R., AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, San Francisco, Calif.

GOLDBERG, A. 1991. Reducing overhead in counter-based execution profiling. Tech. Rep. CSL-

TR-91-495, Computer Systems Lab., Stanford Univ., Stanford, Calif., Oct.

GOLDBERG, A. <J., AND HENNESSY, J. L. 1993. Mtool: An integrated system for performance

debugging shared memory multiprocessor applications. IEEE Trans. Parallel Distrib. Syst. 4,

1 (Jan.), 28-40.
GRAHAM, S. L., KESSLER, P. B., AND MCKUSICK, M. K. 1983. An execution profiler for modular

programs. Softw. Pratt. Exper. 13, 671-685.

KENNINGTON, J. L., AND HELGASON, R. V. 1980. Algorithms for Network Programming, Wiley-

Interscience, New York.

KERNIGHAN, B. W., AND RITCHIE, D. M. 1988. The C Programming Language. 2nd ed. Prentice-

Hall, Englewood Cliffs, N.J.

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 4, July 1994.

1360 . T. Ball and J. R. Larus

KNUTH, D. E. 1973. The Art of Computer Programmmg, Vol. 1 Fundamental Algorithms. 2nd

ed. Addison-Wesley, Reading, Mass.

KNUTH, D. E., AND STEVENSON, F, R, 1973. Optimal measurement points for program fre-

quency counts. BIT 13, 313-322.

LAWS, J. R. 1990. Abstract execution. A technique for efficiently tracing programs. Softw.

Pratt. Exper. 20, 12 (Dec.), 1241-1258.
LARUS, J. R. 1993. Efficient program tracing. Computer 26, 5 (May), 52-61.

LARUS, J. R., AND BALL, T. 1994. Rewriting executable files to measure program behavior.

Softw. Pratt. Exper. 24, 2 (Feb.), 197-218

MAHESHWARI, S. 1976. Traversal marker placement problems are NP-complete. Rep. CU-CS-

092-76, Dept. of Computer Science, Univ of Colorado, Boulder, Colo.

MCFARLING, S, 1991. Procedure merging with instruction caches In Proceedings of the SIG-

PLAN 91 Conference on Programming Language Design and Implementation. SIGPLAN Not.

(ACM) 26, 6 (June), 71-91.
MENDOZA, K., ED 1989. Systems performance evaluation cooperative. SPEC Newsl. 1, 1 (Fall).

MIPS COMPUTERSYSTEMS. 1990. UMIPS-V Reference Manual (pixie and pixstats). MIPS Com-
puter Systems, Sunnyvale, Calif.

MORRIS, W. G. 1991. CCG: A prototype coagulating code generator. In Proceedings of the

SIGPLAN 91 Conference on Programming Language Design and Implementation. SIGPLAN

Not. (ACM) 26, 6 (June), 45-58.
PETTIS, K., AND HANSON, R. C. 1990. Profile guided code positiomng. In Proceedings of the

ACM SIGPLAN 90 Conference on Programming Language Design and Implementation SIG-

PLAN Not. (ACM) 25, 6 (June), 16-27.

PROBERT, R. L. 1975. Optimal insertion of software probes in well-dehmited programs. IEEE

Trans. Softa,. Eng. SE-8, 1 (Jan.), 34-42

RAMAMOORTHY, C. V., KIM, K. H., AND CHEN, W. T. 1975 Optimal placement of software

monitors aiding systematic testing, IEEE Trans. Softw. Eng. SE-1, 4 (Dec.), 403 –410.

RAMANATH, M. V. S., AND SOLOMON, M, 1982. Optimal code for control structures. In Confer-

ence Record of the 9th ACM Symposium on Principles of Programrnzng Languages (Al-

buquerque, N. M.) ACM, New York, 82-94.
SAMPLES, A. D. 1991. Profile-driven compilation. Ph.D. thesis (Rep. UCB/CSD 91/627), Com-

puter Science Dept., Univ. of California, Berkeley, Apr
SARKAR, V, 1989. Determming average program execution times and their variance In Pro-

ceedings of the ACM SIGPLAN 89 Conference on Programming Language Design and Imple-
mentation. SIGPLAN Not. (ACM) 24, 7 (June), 298–312.

SMITH, A. J. 1982. Cache memories. Comput. Suru. (ACM) 14, 3 (Sept.), 473-530

TARJAN, R. E. 1983. Data Structures and Network Algorithms. SIAM, Phdadelphia, Pa.

WALL, D. W 1991. Predicting program behavior using real or estimated profiles. In Proceed-

ings of the SIGPLAN 91 Conference on Programming Language Design and Implementation.

STGPLAN Not. (ACM) 26, 6 (June), 59-70.

Received August 1992; revised June 1993; accepted July 1993

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No 4, July 1994

