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ABSTRACT

The analysis of the amount of human resources required to com-

plete a project is felt as a critical issue in any company of the elec-
tronics industry. In particular, early estimating the effort involved

in a development process is a key requirement for any cost-driven

system-level design decision.

In this paper, we present a methodology to predict the final size
of a VHDL project on the basis of a high-level description, ob-
taining a significant indication about the development effort. The
methodology is the composition of a number of specialized models,
tailored to estimate the size of specific component types. Models
were trained and tested on two disjoint and large sets of real VHDL
projects. Quality-of-result indicators show that the methodology is
both accurate and robust.
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ample, solving thenake or buyproblem requires such an accurate
estimate of resource consumption and reuse cost-effectiveness.

There exist accurate estimation techniques and flows for perfor-
mance, area and power consumption, some working at high level
of abstraction too, but when it comes to human time (currently the
most valuable and scarcest resource), a well-assessed theory to de-
velopment effort estimation is still a long way to come.

In this paper we present a method for estimating the number of
lines of VHDL code in which an embedded system design project
will evolve, given its specification, which is recognized to be one of
the factors affecting its development effort, e.g. through CoCoMo-
style models [2] likeE = a - S°, whereE is the effort,S is the
code size and andb are parameters accounting for multiplicative
and scale phenomena (see [7] for more details). In our method-
ology, without loss of generality, specifications are not provided
in a distinct language but in VHDL itself: in fact any incomplete
VHDL project can be considered as an intermediate step towards
the final product. Our methodology can be applied at any stage of
a development-by-refinement design process, and as the draft ap-
proaches the completed project, size estimates will converge to the
actual final value.

The paper structure is as follows: section 2 provides the concep-
tual framework of the methodology, while section 3 introduces a
convenient formal representation of VHDL designs on which the
entire methodology is based. The core of the methodology is pre-
sented in section 4, where models for each of the basic elements

VHDL analysis, embedded systems, design metrics, cost estima-composing the designs are presented, together with a constructive

tion, system-level design

1. INTRODUCTION

In the last years we assisted to the growth of design reuse initia-
tives, such as the VSIA [1], and to the spread of third-party sup-
pliers of intellectual property cells. There is a consistent number
of cost models, which pay particular attention both to the advanced
concept study phase (like in [5] for the automotive market) and to
the management of the design cycle (like in [3]).

Technical managers face new scenarios, where the driving forces

aretime to marketand flexibility, together with the capability of

controlling costs. The success of a strategy often depends strongly
on coarse-grained decisions taken during the early phases. For ex
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strategy to provide estimates for the entire design.

To apply our methodology, we implemented a complete evalua-
tion flow (including a VHDL-93 compliant parser), able to perform
model training, test and application. Details are described in sec-
tion 5. Section 6 discusses the achievements of the methodology
and possible improvements.

2. GENERAL APPROACH

Designing systems in VHDL consists in designing an appropri-
ate set of interconnected entities, each accompanied by one or more
implementations (called architectures) and their respective inter-
nals (processes, signals, variables, functions and procedures; see

[8] and [4]). Usually, these entities are not developed concurrently
at the same time, instead the whole project is first defined as a top-
level entity with no internal details, then decomposed in more sub-
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down fashion.

When a project is complete, all of its components and relation-
ships can be hierarchically represented with a graph, on which the
calculation of the total project size from each part’s size is trivial.

Inincomplete projects (that is, projects considered at an arbitrary



intermediate development stage), parts are not all known equally:
some parts are finisheddmpletely knowp for some only their ex-
ternal interface is known, typically because they were identified in a
top-down decomposition but not yet decomposed in further subsys-
tems externally knowh some areeompletely unknowrtypically
because they will be identified in the next decomposition steps of
externally known parts.

For incomplete projects, we also found a formal and convenient
way to represent the information available on completed parts, their
completion status and the remaining of the project, still in the
form of a graph. We will provide a set of models and application
rules, that allow to estimate the overall resulting size of the finished
project (expressed in lines of code, LOC) on the basis of the above
graph.

Since a specification is nothing more than an incomplete project,
considered at an arbitrary (usually early) stage of a top-down,
development-by-refinement design process, it is correct to say that
our method is capable of estimating the final size of a VHDL
project on the basis of its specifications. Then, the development
effort cost from the project size can be estimated, by following the
strategy proposed in (as shown in [7]).

3. FORMAL ASPECTS

In this section we introduce some definitions required to describe
the method in a formal and concise way. Intuitive explanations
are reported in place of formalisms whenever the second would be
unnecessarily tedious; for all the formalities, see [10].

3.1 Syntax objects and graphs

A syntax objectSO, for short) is any of the following: a project,

an entity, an architecture, a process, a subprogram, a component

declaration or instantiation. As anticipated, all the SOs of a com-
plete project can be hierarchically arranged in a graph, cajlathx
object graph(SOGfor short), which depicts their relationships. A
SOG is a graph containing nodes of 7 types (one for each SO type)
and edges of 2 typescontainstype andreferencegype edges.
Given a project, building its SOG means:

e creating a node for each SO appearing in the project;

e connecting noded to node B with a containstype edge
(A D B) whenever the SO nameticontains the SO named
B (that is, B is defined inside thed, like a process can be
defined inside an architecture);

e connecting noded to node B with a referencegype edge
(A — B) when SOA references S@ (informally, inside
A there is a call or an instantiation 18).

A sample SOG, generated by our tools and depicting the struc-
ture of a Xilinx ADS7870 8-channel voltmeter Springboard mod-
ule, implemented on a CoolRunner XPLA3 CPLD, is reported in
fig. 1. Dashed lines representtype edges and solid lines repre-
sent—-type edges.

In incomplete projects, SO are usually known partially. To han-

dle these cases, we introduce the KSOG, which is a decorated SOG,

where atag is added to each node, indicating its knowledge condi-
tion; in detail, a SO is marked with:

e (C) completely knowyif it is complete and finished in all its
constituents;

e (E) externally knownif its external interface is known (ports
for an architecture, signature for a function, etc.); no internals
need to be provided,;
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Figure 1: The SOG for a real VHDL project.

e (1) internally known if it is externally known and all its di-
rectly contained element are at least externally known;

e (V) virtually completely knownwhen its cost is already
known (e.g. it was reused, or bought externally), even though
its details are not provided; dealing with these SO's is trivial,
since they are treated as an additive cost constant;

e (U) completely unknowrwhen it is not declared at all: size
estimates cannot be generated; instead, estimates for con-
tainer objects must take into account the possible existence
of unknown objects.
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Figure 2: A sample KSOG.

Figure 2 shows a sample KSOG and illustrates some of the pos-

sible combinations of nodes and edges.

If we regard a project specification as an incomplete project (thus
a KSOG), we can reduce the estimation of its development cost
starting from its specifications to the evaluation of the cost of its
KSOG.

3.2 Bunches

Most KSOGs have much higher complexity than samples in fig-
ures 1 and 2, possibly containing thousands of nodes and edges.
Therefore, designing an appropriate evaluation algorithm running
on KSOGs could be impractical. Instead, we introduce an object
of intermediate granularity, the bunch, that simplifies the task of
KSOG evaluation.

Roughly speaking, a bunch is a structure composed by a VHDL
entity and whatever belongs to it. More formally, a bunch is a tree
rooted at an entity, containing all those nodes reached by the



SOG TR 4. for each bunch, its size is calculated by applying the most
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Figure 3: Bunch decomposition of the sample SOG from fig-

ure 1. 4.1 Models

transitive closure ob starting from node®. Bunches exhibit the Accordingly with the methodology so far defined, we introduce

following useful properties: three categories of models: SOG models, Bunch models and SO
models.

1. all the information required to evaluate the size of a bunch SO models estimate the final size of a SO given the set of avail-
is associated to its nodes, therefore each bunch size can beable information on it, not counting contained objects (which are
evaluated independently; subject to respective SO models, if at least externally known). For

completely unknown SOs, their number and size are estimated at

2. any SOG and KSOG can be exactly partitioned into one or bunch level, thanks to bunch models. Through bunch models, an
more bunché's as in figure 3, therefore the size of a SOG is  estimate of the final size of each at-least-externally-known bunch
given by the sum of its bunches’ size. For KSOGs things are s obtained; then, SOG models are applied to obtain the size of the

more complicated, since some bunches could be completely whole project as a function of the size of the at-least-externally-
unknown and their size will be estimated (details in the next known levels.

section).

3.3 Levels

It is convenient to arrange bunches in levels, thus obtaining a
structure that matches the top-down decomposition process; the
usefulness of this operation will become clear in the next section.
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(a strict subset of incomplete projects) cannot, therefore the above m“’l
condition is not really restrictive. Figure 4: All the models used in this methodology.
The whole set of models used in our methodology is illustrated

4. THE CORE OF THE METHODOLOGY in figure 4; it is possible to classify them in a tree view.

The application of our methodology consists of the following
steps: 4.1.1 Syntax object models

SO models return an estimate of the core size of a object for
which some information is given; they are specialized on the ba-
sis of object type (entity, architecture, process, ...), objeatle
(behavioral, structural, data-flow) if applicable, and amount of in-

| formation required. A list containing the most interesting variables
and quantities subject to estimation is reported in table 1.

Similar models were developed for the other SO types; their full

1with negligible exceptions, shown in [10]. details and statistical performance evaluation can be found in [10].

1. a KSOG is built starting from specifications;
2. the KSOG is decomposed into bunches;

3. bunches are split among levels according to their mutua
structural—-type edges;




Quantity Symbol K1 K2 K3 K4
Total number of ports np Entity interface v v v v
Number ofin , out , inout , other ports Nip, Nops Niop, Nap Entity mode v v v v
Total number of generics ng Number of declared components v v v .
- - Declared component interface v v .
Total number of internal signals Ng, hs Number of instanced components v’ v v
Number of component declarations, instantiations Neds Nei Instanced component interface v’ v ;
Number of processes in an architecture Npr Number of architecture signals v .
Number of sensitivity signals in the i-th process Nps, Number of processes v v
Number of variables in the i-th process Npu, Process variables v R
Length of entity declaration in LOC Le K . . .
Length of archﬁecture core in LOG I Table 3: Required known information for each model aggre-
Length of the i-th component declaration in LOC Lea, gate.
Length of the i-th component instantiation in LOC Lei, ) .
Length of the i-th process in lines of code Lpr, L3) represents the 80.8% of all the lines of code of the project.

Table 1: Variables and estimates used in models.

4.2 Model Aggregates

As said before, in order to estimate the size of a bunch, a strict

Last known-size level

n o u L2 L3 L4 L5 L6 L7 L8 cooperation between SO and bunch models is required. Given a
1 1 . . : : . . . bunch populated with a reasonable number of nodes (one architec-
20486 1 : : : : : : ture, several processes and components, several signals and vari-
3018 0508 i ' ' S bles), th ber of possible different knowled ditions that
1 0141 0204 0721 1 . . ) ) ables), the number of possible different knowledge conditions tha

5 0083 0149 0425 0.658 1 . . . could occur is remarkable. It is therefore impractical (and of du-

s 8-822 8-(2)% 8-282 8-?&; 8-283 o ;25 S bious usefulness) to validate models in any possible condition; In-

8 0113 0167 0408 0706 0860 0921 0979 1 stead, we established four discrete conditions, associated with re-

spective model sets, ready to be applied to assess whether a bunch
in a given refinement state qualifies or not for a given knowledge
state. Such states, called K1, K2, K3 and K4, and the associated
4.1.2 Bunch models rules are illustrated in table 3. For each cell, the presence of a tick
mark (v') means that variables indicated in that row must be known
in order to qualify for the knowledge state indicated in that column.
The corresponding model aggregate for condition K2 is reported
elow as an example.

Table 2: Size of the first: levels as a fraction of the whole
project.

Bunch models estimate the cardinality of a set of SOs, directly
contained in a given SO, all of which are completely unknown and
of the same type. For example, there are models to estimate theb
number of processes inside a given architecture, or the number of
subprograms directly declared inside a process, and so on. Bunch (K2) L Le(np,ny) (EM3)
models are classified on the basis of the type of nodes involved in Lae(Pips hop, hiop: hap)  (AM2H)
the D-type edge. S Leg, (np; g, (CpoM2)

In [10], we conducted an extensive study in order to identify all Sl Dy, (C,M1)
the possible combinations of node types involved b &elation- in_. Lipr (PMO)
ship, then we counted the number occurrence for each type in our
project base, realizing that only a small amount of them were statis-

tically significant, and developed an appropriate set of models for 5. EXPERIMENTAL RESULTS

each of them. T )

To assess the accuracy of our statistical modeling, we performed
4.1.3 SOG models a nymber of experiments. Fir_st, to co_nstitute a suitable database of

Once the size of the not-completely-unknown bunch levels has ProJects, we collected 60 publicly-available fully-developed VHDL

been estimated, the last task to perform is to estimate the size of a”prolect_§._ Their application scope covers general purpose proces-
the KSOG, on the basis of the above result. This is the purpose of SOTS; digital signal processors, basic building blocks like FFTs, mi-
SOG models. The creation of appropriate SOG models was a diffi- crocontrollers, neural networks and so on. This base of project was
cult task, since it was not clear which ones, among all the properties SPIit in two sets: one used to tune the methodology and the other
of the KSOG representing the incomplete project and other possi- used for val_ldatlon purpose. Rele\_/ant statlstlc_al data characterizing
ble available data, were significant in order to estimate the full final ©f SUch projects are summarized in the following table:
KSOG size. In order to understand that, we designed a rich set of

4+

different hypotheses and tested them against our project base. The Tuning Validation
hypothesis with the highest predictive power turned out to be the  Number of projects: 41 19
following: given a KSOG of depth, where the size of all levels Humgﬂ OI mg:: f"edSi i 3885330 22;‘61%8
. . . . . umbper o coae lines: , ,
from 1tok is kn_own, it shoulq be pQSS|bIe to find an appropriate . jative size: 16.5M 12.0M
value, representing the following ratio: —
Number of entities: 945 571
I Z ) L. Number of architectures: 967 570
— isn Number of component declarations: 952 634
Doicr Li Yoicn Li Number of component instantiations: 46,653 35,478
= = Number of subprogram declarations: 587 298
This ratio expresses how many times the whole project is larger ~Number of ports: 9,276 4,984
than levelsl..k. In each cell (rowi, columnjy) of table 2 we re- Number of signals: 58,836 39,017
e ! Mg . Number of variables in processes: 1,747 2,449
ported the average values of such ratios collected on our project Number of variables in subprograms: 387 299

base. For example in projects with exactly 6 levels (row 6), the
number of lines of code belonging to levels 3 and above (column 2the full contents of this archive is available at our website [9]




To automatically collect and process project base data, and to
tune, validate and apply models, we developed a set of tools com-
prising a lexical filter to remove comments, a dedicated VHDL
parser to read source files, extract syntax-related information and
store it in a specifically-designed SQL database, a set of Tcl scripts
to apply all the models and a rich, Tcl/Tk-based, graphical front-
end to the above tools. The tool stack is represented in figure 5.
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Figure 5: Automatic tools developed for this research.

An exhaustive evaluation of our methodology would consider

any possible subset of each project SOG of our project base, thus

obtaining a KSOG, then submitting it to the models and comparing
the result with the real size of the SOG. But since the number of
all possible partial knowledge conditions in a project is extremely
high, a test like the one described above is impractical.

Instead, for each of our projects, we set as unknown all infor-
mation apart those required by model aggregate K2. Then, for all
possiblek, we used as input the firét" levels of the KSOG ob-
tained at the previous step. Results follow:

Internal validation (based on tuning projects):

L L L—L
Average value 2582.071 1826.582 427.492
Standard deviation 3868.919 2950.914 1400.412
Correlation coefficient betweeh and L 0.8627

External validation (based on validation projects) :

L L L-L
Average value 4016.750 2029.705 -489.674
Standard deviation 5514.420 3121.928 3034.134
Correlation coefficient betweeh and L, 0.8713
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Figure 6: Test set: actual vs. estimated lines of code
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Figure 8: Test set: error cumulative distribution.

6. CONCLUSIONS

After collecting a relevant amount of code 28 MB), belong-
ing to real industry projects, and implementing automatic analysis
and modeling tools, we delivered a methodology, able to estimate
the size of each project, with a degree of accuracy depending on
the amount of available knowledge. The methodology proves to be
both accurate and robust.

Accuracy is proved by a high between real and estimated data
(0.8627 and 0.8713 respectively, for internal and external valida-
tion) and by acceptable. (1400.412 and 3034.134 lines of code
respectively; int more than 80% of the cases, estimation error falls
in +o.; as represented in fig. 6, 7 and 8). Robustness is confirmed
by null degradation of and a tolerable degradation 6f when
validation is switched from training to test set.

Error compensation occurred whenever models were aggregated:
models resulting from composition of finer granularity sub-models
exhibit better performances than their constituents (e.g. when syn-
tax object models were integrated to form bunch models, and bunch
models coalesced to constitute SOG models).

Our project base contains the vast majority of the public VHDL
models on the Internet and is superabundant for SO model tuning,
sufficient for bunch models, but scarce when it comes to SOG mod-
els. The current effort is to achieve better results with SOG models,
by increasing the project base size, and to refine the back-end strat-
egy to derive development effort from project sizes (as anticipated
in [7]).



p(-, L)

Entities

n;

p n

Viop
0.8740
(0.2495)

np Nop nep ng nps

0.7875
(0.6536)

0.4277
(0.5544)

0.5687
(0.5670)

0.1509
(0.3066)

0.9059
(0.5737)

0.4622
(0.1625)

Architectures 0.2535

(0.1090)

0.3174
(0.1615)

06192
(0.0932)

0.0844
(0.0923)

0.5640
(0.0127)

Processes 0.2291

(-0.0372)

0.2867
(0.0771)

0.3239
(0.0849)

Table 4: Impact of reformatting on p(-, L).

CURRENT DEVELOPMENTS

Our research group is currently committed to enhancing the
methodology in a number of ways: extending the number of
projects in the training and test sets, removing the influence of dif-
ferent coding styles, and moving towards more complex models
with higher contents in semantics.

7.1 Influence of coding-style

The next version of our estimation flow includes a VHDL re-
formatter (see [6]), which proved to be dramatically effective in
reducing the source code length variability due to different coding
styles. Preliminary studies show that the coefficients of correlation
between the length of a given syntax object and each of its available
variables exhibit significant increases after the code reformatting is
performed, as shown in table 4 (values before reformatting are in
related in paretheses).

7.2 Risks of overfitting
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Figure 9: Training set: actual vs. estimated lines of code
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Figure 10: Test set: actual vs. estimated lines of code

The vast majority of the models introduced in section 4.1.1 are
simple linear models, using only variables with high correlation

coefficients with the length. In several cases, the influence of a
given variable (e.g. number of ports) over an object’s length is
known to be linear, thus, a linear model is known to be coraect
priori. For all the other cases, we are currently evaluating the use
of higher-order models, using all the available variables.

In Figure 9 and 10 we report the results the internal and external
validation respectively of an estimation flow in which most linear
models have been replaced with second order models.

Internal validation:

L L L-L
Average value 1543.269 1843.131 299.861
Standard deviation  3096.056 3375.566 622.811
Correlation coefficient betweeh and L 0.9852
External validation:
L L L-L
Average value 2376.034 8848.160 6472.126
Standard deviation 3659.174 30521.040 27922.626
Correlation coefficient betweeh and L 0.7398

We believe that an improper use of high-order models using also
low-correlation variables could lead to overfitting, as above, with
very good accuracy in the internal validation and decreased accu-
racy in the external. These considerations deserve a deeper study
and are currently our work goals.
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