Scheduling Coarse-Grain Operations for VLIW Processors

N.G. Busa

A. van der Werf

M.Bekooij

Philips Research Laboratories, Prof. Holstlaan 4, 5656AA Eindhoven, The Netherlands
e-mail: {Natalino. Busa, Albert.van.der. Werf, Marco.Bekooij}@philips.com

Abstract

In order to speed up current DSP applications, complex
hardware accelerators may be added in DSP
architectures. This means that “coarse-grain”
operations, characterized by a long latency and by a
complex Input-Output timeshape, may be available to
implement the given application. In a traditional
scheduling approach, coarse-grain operations are treated
as bulky atomic multi-cycle operations, under the worst
case assumption that inputs and output are corfined at
the beginning and at the end of the operation itself. In this
paper, we propose a novel scheduling method for VLIW
processors, where coarse-grain operations are
decomposed into a number of fine Input and Output
operations. Therefore, each I/O operation is scheduled
separately in order to synchronize data communication
among operations in a “Just in Time" fashion. This leads
to a higher Instruction Level Parallelism (ILP) in the
processor, and decreases the number of registers needed
in the architecture. The experiments show that embedding
custom hardware accelerators in a VLIW datapath, as
proposed in this paper, enhances performances keeping
the VLIW controller’s microcode width small.

1. Introduction

Modern signal processing systems are designed to
support multiple standards and to provide high
performance. Multimedia and telecom are typical areas
where such combined requirements can be found. The
need for high performance leads to architectures that may
include application specific hardware accelerators.

In the HW/SW co-design community, “mapping”
refers to the problem of assigning the functions of the
application program to a set of operations that can be
executed by the available hardware components [1][2].
We propose to arrange operations in two groups
according to their complexity: fine-grain and coarse-grain
operations. Examples of fine-grain operations are
addition, multiplication, and conditional jump. They are

1080-1820/00 $10.00 © 2000 IEEE

47

performed in a few clock cycles and only a few input
values are processed at a time. Coarse-grain operations
process a bigger amount of data and implement a more
complex functionality such as FFT-butterfly, DCT, or
complex multiplication.

A hardware component implementing a coarse-grain
operation is characterized by a latency that ranges from
few cycles to several hundreds of cycles. Moreover, data
consumed and produced by the unit is not concentrated at
the end and at the beginning of the course grain operation.
On the contrary, data communications to and from the
unit are distributed during the execution of the whole
coarse-grain operation. Consequently, the functional unit
exhibits a (complex) timeshape in terms of Input-Output
behavior [9].

According to the granularity (coarseness) of the
operations, we can group architectures in two different
categories, namely processor architectures and
heterogeneous multi-processor architectures, defined as
follows:

Processor architectures: The architecture consists of a
heterogeneous collection of Functional Units (FUs) such
as ALUs and multipliers. Typical architectures in this
context are general-purpose CPU and DSP architectures.
Some of these, such as VLIW and superscalar
architectures can have multiple operations executed in
parallel. The FUs execute fine-grain operations and the
data has typically a “word” grain size.

Heterogeneous multi-processor architectures: The
architecture is made of dedicated Application Specific
Instruction set Processors (ASIPs), ASICs and standard
DSPs and CPUs, connected via busses. The hardware
executes coarse-grain operations such as a 256 input FFT,
hence data has a “block of words” grain size. In this
context, operations are often regarded as tasks or
processes.

The two architectural approaches above described are
always been kept separated. In this paper, we propose a
way of embedding (co)-processors as FUs in a VLIW
processor datapath (e.g. Figure 1). The VLIW processor

can have FUs executing operations having different
latencies and working on a variety of data granularities at
the same time [12]. Therefore, the challenge is to
efficiently schedule a mixture of fine-grain and coarse-
grain operations, minimizing schedule’s length and
VLIW instruction width. In other words, is it possible to
mix FU’s with such different latencies and 1/O
timeshapes in a VLIW datapath, aiming to high
performance during the execution of the application?

D i = el e 12 el

I
il
;;R
i

B
....r._,. :
[

Figure 1. Embedding (co)-processors as
FUs in a VLIW architecture

The rest of the document is organized as follows.
Section 2 depicts the current state and the available
results on coarse-grain operations for DSP architectures.
In Section 3 the traditional scheduling approach is
defined from a formal point of view. In Section 4 and 5,
the /O timeshape scheduling is stated and the proposed
method is explained. An example is presented in Section
6, followed by some experimental results and the
conclusions, presented respectively in Section 7 and 8.

2. Motivation and Related Work

Commercially available DSPs, based on the VLIW
architecture, limit the complexity of custom operations
executed by the datapath’s FUs. The R.E.A.L. DSP [3],
for instance, allows the introduction of custom units,
called Application-specific eXecution Units (AXU), but
the latency of these functional units is limited to one
clock cycle. Other DSPs like the TI ‘C6000 [4] may
contain FUs with latency ranging from one to four cycles.
The Philips Trimedia VLIW architecture [5] allows multi-
cycle and pipelined operation ranging from one to three
cycles. The architectural level synthesis tool Phideo [10]
can handle operations with timeshapes, but is not suited
for control-dominated applications. Mistral2 [11] allows
the definition of timeshape under the restriction that
signals are passed to separate I/0 ports of the FU.

Currently, no scheduler can cope well with FUs with
complex timeshapes. To simplify the scheduler’s job, the
unit performing a coarse-grain operation is traditionally
characterized only by its latency and the operation is

48

regarded as atomic. Consequently, this approach
lengthens the schedule because all data must be available
before starting the operation, regardless the fact that the
unit could already perform some of its computations
without having the total amount of input data. This
approach lengthens the signals’ lifetime as well,
increasing the number of needed registers.

We will show that introducing coarse-grain operations
has a beneficial influence on the microcode width. Firstly,
because FUs executing coarse-grain operations have
internally their own controller. Therefore, the VLIW
controller needs less instruction bits to steer the entire
datapath. Secondly, exploiting the 1/0 timeshape allows
us to deliver and consume data even if the operation itself
is not completed, hence shortening signals’ lifetime and,
therefore, the number of datapath registers. The
instruction bits needed to address datapath registers and
steering in parallel a large number of datapath resources
are two important factors contributing to the large width
of the VLIW microcode. Ultimately, enhancing the ILP
has a positive influence on the schedule length, and
hence, on microcode length. Keeping microcode area
small is an essential requisite for embedded applications
aiming at high performances and coping with long and
complex program codes.

The internal schedule of the FUs will be partially taken
into account while scheduling the application. In this
way, a FU’s internal schedule could be considered as
embedded in the application’s VLIW schedule. Doing so,
the knowledge on the 1/O timeshape might be exploited to
provide or withdraw data from the FU in a “just in time”
fashion. The operation can start even if not all data
consumed by the unit is available. A FU performing
coarse-grain operations can be re-used as well. This
means that it can be maintained in the VLIW datapath,
while the actual use of its output data will be different. As
an example, we could consider the possible variation of
FFT algorithms implemented using an “FFT radix-4” FU.
Then this custom FU can be re-used while the algorithm
is modified from a decimation-in-time to a decimation-in-
frequency FFT.

The VLIW processor may perform other fine-grain
operations while the embedded custom FU is busy with
its coarse-grain operation. Therefore, the long latency
coarse-grain operation can be seen as a microthread [6]
implemented on hardware, performing a separate thread
while the remaining datapath’s resources are performing
other computations, belonging to the main thread.

3. Traditional Scheduling approach

Before introducing the scheduling problem, let us
define the Signal Flow Graph (SFG) [7][8]{9] as a way to
represent the given application code. An SFG describes

the primitive operations performed in the code, and the
dependencies between those operations.

Definition 1. Signal Flow Graph SFG.

A SFG is a 8-tuple (V, I, O, T, Eq, E,, w, 8), where:

e V isaset of vertices (operations),

e 1 isthe set of input,

O s the set of output,

T< Vx ILO is the set of I/0 operations’ terminals,

Eq € TxT is a set of data edges,

E, ¢ TxT is a set of sequence edges, and

w : E;— Z is a function describing the timing delay

(in clock cycles) associated with each sequence edge.

e J:V — Zis a function describing the execution
delay (in clock cycles) associated with each SGF’s
operation.

In the definition of the SFG a distinction is made
between directed data edges, and directed and weighted
sequence edges. They impose different constraints in the
scheduling problem where “scheduling” is the task of
determining for each operation veV, a start time s(v),
subject to the precedence constraints specified by the
SFG. Formally:

Definition 2. Traditional Scheduling Problem.
Given a SFG(V, I, O, T, Eq, E;, w, 8), find an integer
labeling of the operations s: V—Z", where:

s(vj) = s(vi) + 8(vy)
s(vj) 2 s(vi) + w((t;, 1;))

Yi,j,hk (v, on), (vj, i) €Eq
Vi,j o (t, ek

and the schedule’s latency:
maxi-; {s(v;)} is minimum. (]

In the scheduling problem, as defined above, a single
decision is taken for each operation, namely its start time.
Because the /O timeshape is not included in the analysis,
no output signal is considered valid before the operation
is completed. Likewise, the operation itself is started only
if all input signals are available. This is surely a safe
assumption, but allows no synchronization between the
operations’ data consumption and production times and
the start time of the other operations in the SFG.

4. Problem statement

Before formally stating the problem, let us introduce
the definition of operation’s timeshape as follows:

Definition 3. Operation’s timeshape
Given an SFG, for each operation veV, we define
timeshape the function o: T, —Z", where:

49

T,={teT | t=(v, p), with pe 1O }
is the set of I/O terminals for operation veV. n

The number assigned to each I/O terminal models the
delay of the I/O activity relatively to the start time of the
operation. Hence, for an operation of execution delay 8,
the timeshape function associates to each I/O terminal an
integer value ranging from 0 to J-/. An example of
operation’s timeshape is depicted in Figure 3.b.

In the traditional scheduling problem, each operation is
seen as atomic in the graph. In order to exploit the notion
of the operation’s I/O timeshape, the scheduling problem
is revisited. Where a single decision was taken for each
operation, now a number of decisions are taken. Each
scheduling decision is aimed to determine the start time
of each I/O terminal belonging to a given operation.

Hence, the definition of the revisited scheduling
problem taking into account operations’ timeshapes is the
following:

Definition 4. I/O Timeshape Scheduling Problem:

Given a SFG and a timeshape functions for each
operation veV in the SFG, find an integer labeling of the
terminals s:T—>Z", where:

s((vj, i) > s((Vi, On))
s(tj) = s(t) + w((ti, 1))

Viyj’h’k : (t(vh Oh)’ (vj’ ik))EEd
Vij: (t, t)eE,

and the schedule’s latency:

maxi=;_,{s(v;)} is minimum.]

It is important to notice that, introducing the concept
of timeshape, the operation’s latency function & is not
needed anymore and a scheduling decision is taken for
each operation’s terminal. The schedule found must
satisfy the constraints on data edges, sequence edges, and
respect the timing relations on the I/O terminals, as
defined in the timeshape functions.

In order to exploit the I/O timeshape characteristic of
operations, the timeshape function o is translated in a
number of sequence edges, added in the set E;. These
extra constraints impose that the start times of each I/O
operation terminal, for any feasible schedule, are such
that the timeshape of the original coarse-grain operations
is respected.

S. The I/O Timeshape Scheduling Method

The translation of the timeshape function into
sequence edges is done in a different way depending on
whether the FU implementing the coarse-grain operation,
can or cannot be stopped during its computation (e.g.
Figure 4). If the operation can be halted, then the

timeshape of the operation can be stretched, provided that
the concurrence and the sequence of the 1/O terminals are
kept. If the unit cannot be halted then an extra constraint

must be added in the graph, to make sure that not only the
" sequence but also the relative distance between 1/O
terminals is kept as imposed by timeshape function.

Let us consider two I/O terminals belonging to the
same original coarse-grain operation, namely t; and t,,
then three different cases can happen:

1) Concurrency

If two 1/O terminals, t; and t,, take place during the
same cycle according to the timeshape of the coarse-grain
operation, then two sequence edges are added. Those
extra edges guarantee that the operations t; and t; in any
feasible schedule, for the given SFG, will take place in
the same cycle (e.g. in Figure 4.b, 0, and i,).

If o(t)) = o(ty) then (t}, t2), (t2, 1)) €Es
with W(tl, tz) = W(tz, tl) =0

According to the definition of the revisited scheduling
problem, those two added edges impose that:

s(ty) > s(tp) and s(ty) > s(t))
hence: s(ty) = s(ta)]
2) Serialization (hold-able operation)

If two [/O terminals, t; and t,, are not concurrent
according to the coarse-grain operation’s timeshape, then
a sequence edge is added. This extra edge guarantees that
the order of the two operations will be kept in any
feasible schedule. Anyway, it allows that operation t, can
be postponed relatively to operation t, (e.g. in Figure 4.b,
i; and iy).

If O'(tz) - G(tl) = A >0 then (tl, tz)eEs
with w(t),) = A

According to the definition of the revisited scheduling
problem, this added edge imposes that:

s(iz) 2 s(iy) + w(iy, i2) = s(iy) + A
hence: s(iz) - s(in) = A]
3) Serialization (not hold-able operation)

The distance between the start times of the two 1/O
terminals, t; and t,, is imposed, for any feasible schedule,
as defined by the coarse-grain timeshape (e.g. Figure 4.c,
i) and i,). This is done adding two sequence edges:

If o(ty) - o(t)) = A > 0 then (t,, tp), (t2, t;)€E;
with w(t), t;) = A and w(t,, t;) = -A

50

According to the definition of the revisited scheduling
problem, those two added edges impose that:

s(tp) 2 s(ty) + w(t), tp) = s(ty) + A
s(ty) = s(ty) + w(ta, ty) = s(t) - A

From the last two equations, it follows that the
difference in the starting time between t, and t, is exactly
equal to that imposed in the timeshape. Hence:

s(tz) - s(t) = A n

For each operation, the method adds a significant
number of edges, in the order of {lUOJ’. However, many
of them can be pruned away, for instance introducing a
partial order in the set of the operation’s terminals. The
pruning step is mostly trivial and therefore, herewith not
described.

Once the operations are described by their collection
of 1/0 operations and the sequence edges are added, the
SFG is scheduled using known and traditional techniques.
Provided that the constraints due to the operations’
timeshape are respected, the 1/0O terminals of each
operation are now de-coupled from each other and can be
scheduled independently.

6. Example

Let us assume that the given application is performing
intensively the following “2Dtranform” function. To
make the example more realistic, the function considered
is performing a 2D graphic operation. It takes the vector
(x,y) and returns the vector (X,Y), according to the code
as depicted in Figure 2.

(X,Y) = 2Dtransform(int x,y)
{

X = 2%y + 3;

Y = 5*x + 2*y + 1;
}

Figure 2. The Function “2Dtransform”

In order to improve the processor’s performance the
“2Dtransform” is implemented in hardware on a custom
FU. Since the function is performed on hardware, it can
be truly considered a single coarse-grain operation. Its
signal flow graph is depicted in Figure 3.a.

A feasible internal schedule for the (coarse-grain)
operation is depicted in Figure 3.b, where one adder and
one multiplier, both with a latency of one cycle, are
available within the custom FU. The operation has four
I/O terminals and it is performed by the custom FU in
four clock cycles. In this example, although the FU is
active during all the four cycles (Figure 3.b), no 1/O
operation is performed in cycle 2.

o

6(i)=0 o(i)=1
c{0)=10(0,)=2

b) The operation’s
schedule

a) Operation’s SFG

Figure 3. The “2Dtransform” coarse-grain
operation

From the VLIW datapath, the internal operations
performed by the custom FU are not visible and only the
I/O timeshape is actually necessary to model the way the
operation consumes and produces its data (Figure 3.b).

The original coarse-grain operation in Figure 4, whose
content is now not depicted, is re-modeled as a graph of
four single cycle operations, each of them modeling an
I/O terminal. Sequence edges must be added to guarantee
that the timeshape of the original coarse-grain unit is
respected in any possible feasible schedule. In Figure 4.b,
the derived SFG, modeling the behavior of a hold-able
custom FU, is shown. In particular, I/O terminals that
were performed in different cycles, according to the
coarse-grain operation’s timeshape, are serialized so that
their order is preserved (e.g. in Figure 4.b, i; and i,).

4

1
1)
)

A
1 \ -1 ‘,l

\@b? \‘CD{"Q
l” "\
|
.2‘,‘

Y
ORo

/ '~ ~=
/ 0

OB O
Qo

{
2 L2

a) Original b) Hold-able c) Not hold-able
operation operation operation
Figure 4. “2Dtransform” coarse-grain

operation: /0 decomposition

Concurrence of two or more I/O terminals is kept as
well (e.g. in Figure 4.b, the two edges between i; and 0,).
Hence, when a hold mechanism is available for the unit,

51

the scheduler can lengthen the coarse-grain operation
moving I/O terminals apart from each other, as far as the
sequence edges are not violated. The effect on the
hardware is that the FU might be stalled to better
synchronize data communicated to and from other
operations. Figure 4.c shows the graph obtained by
describing the coarse-grain operation in I/O terminals
when no hold mechanism is available for the custom FU.
In this case, the sequence edges added guarantee that the
relative distance between any couple of 1/O terminals, in
any feasible schedule, cannot be different from that
imposed by the coarse-grain operation’s timeshape.

Let us now consider a code where the function
‘2Dtransform’ mapped on a complex FU is used, as
depicted in Figure 5. In this example, the “2Dtransform”
operation is part of a loop body, where other fine-grain
operations, such as ALU operations and multiplication’s,
are performed as well. Let us suppose that the code is
executed on a VLIW processor containing in its datapath
a multiplier, an adder and a “2Dtransform” FU.

for (p=0; p<P MAX; p++) |
for (g=0; g<Q _MAX; g++) {
X =p + q;
-2;
2Dtransform

((

(x,¥)7
X2 + Y*"2 - 100) < 0)
}

}

Figure 5. A nested
“2Dtransform” function

loop using the

The traditional schedule for the SFG of the above
described loop body is depicted in Figure 6.a. The coarse-
grain operation is regarded as “atomic” and no other
operation is executed in parallel with it. In Figure 6.b the
I/O schedule of the complex unit is expanded and
embedded in the loop body’s SFG. The complex
operation is executed concurrently with other fine-grain
operations. According to the schedule, data is provided
for the complex FU to the rest of the datapath and vice
versa when actually needed, thereby reducing the
schedule’s latency. When some data is not available to
the complex FU and the computation cannot proceed
further, the unit is halted (e.g. cycle 2 Figure 6.b). The
stall cycles are implicitly determined during the
scheduling of the algorithm. Using the proposed solution,
the latency of the algorithm is reduced from 10 to 8
cycles. The number of registers needed has decreased as
well. The value produced in cycle 0 in Figure 6.a has to
be kept alive for two cycles, while the same signal in the
schedule in Figure 6.b is immediately used.

The proposed solution is efficient in terms of
microcode area for the VLIW processor. The complex FU
contains its own controller and the only task left to the

VLIW controller is to synchronize the coarse-grain FU
with the rest of the datapath resources. The only
instructions that have to be sent to the unit are a start and
a hold command. This can be encoded with few bits in
the VLIW instruction word.

The VLIW processor can perform other operations
while the embedded complex FU is busy with its
computation. The long latency unit can be seen as a
micro-thread implemented on hardware, performing a
task while the rest of the datapath is executing other
computations using the rest of the datapath’s resources.

Complex FU
activity

alted

a) Atomic coarse-grain operation

Figure 6: Scheduling the example’s loop-body

b) Exploiting the timeshape

7. Experimental Results

The validity of the method has been tested using an
FFT-radix4 algorithm as a case study. The FFT has been
implemented for a VLIW architecture with distributed
register files, synthesized using the architectural level
synthesis tool “A|RT designer” from Frontier Design,
running on a HP-UX machine. The radix-4 function,
which constitutes the core of the considered FFT
algorithm, processes 4 complex data values and 3
complex coefficients, returning 4 complex output values.
A “radix-4” unit has been designed, which consumes 14
(real) input values and produces 8 (real) output values
using one input and one output port. Extra details over the
“radix-4” FU are given in Table 1. The custom unit
“radix-4” contains internally its own controller. A total of

52

21 bits per instruction are necessary to steer the unit’s
internal resources. This implies that the controller should
contain a 546-bit microcode memory. This memory is
dominated by zeroes (less than one quarter is constituted
by sparsely distributed ones), and is relatively small.
Hence, an hardwired solution is preferred for the
synthesis of the mentioned controller. Synthesis
optimization techniques reduce the area of controller of a
factor 3 when an hardwired implementation is chosen.
Therefore, the area of such a controller will be left out
during the analysis of the results shown in Table 3.

Table 1. The Radix4 Functional Unit

latency internal internal
registers resources
Radix4 FU | 26 cycles 16 (218 bits) 1 ALU, 1 MULT

Three different VLIW implementations are tested, as
depicted in Table 2. The architectures “FFT_org” and
“FFT_2ALU’s”) differ in the number of available
resources in the datapath and both can only execute fine-
grain operations (add, multiply). The two architectures
“FFT_2ALU's” and “FFT _radix4” contain the same
hardware resources but they differ in the coarseness of the
operations that they can execute.

Table 2. The tested datapath architectures

Datapath Resources

FFT org 1ALU, 1MULT, 1 ACU, 1 RAM, 1 ROM
FFT 2ALU's 2 ALU, 1 MULT, 1 ACU, 1 RAM, 1 ROM
FFT_radix4 1ALU, 1ACU, 1 RADIX4, 1 RAM, 1 ROM

For each architecture instance, Table 3 lists the
performance of the implemented FFT radix4 algorithm in
clock cycles and the dimension of the VLIW microcode
memory, where the application’s code is stored. If we
take as a reference the first implementation (“FFT org"),
it can be observed in Table 3 that “FFT_2ALU's” presents
the higher degree of parallelism and the best performance.

Table 3. Performance and microcode’s
dimension, experimental results

Performance | Microcode | Microcode | Microcode
(cycles) (width x width n. bits
length) | vs. original
FFT_org 59701 76 * 82 100.0 % 6232
FFT_2ALU's 40145 95 * 61 125.0% 5795
FFT _radix4 49461 67 *74 88.2% 4958

However, the extra ALU available in the datapath
must be controlled directly by the VLIW controller, and a

large increment in the micfocode’s instruction width is
noticed. On the other side, “FFT_radix4” reaches
performance which is in between the first two
experiments, but a much narrower microcode memory is
synthesized. Usually, the part of the code where the
parallelism is necessary is a small fraction of the entire
code. We realize that if the FFT is a core functionality in
a much longer application code then the microcode width,
hence the ILP needed in “FFT 2ALU's”, will not be
exploited adequately in other portions of the code, leading
to a waste of microcode area. “FFT_2ALU'S” and
“FFT _radix4” both offer 2 ALUs and a Multiplier in
architecture for processing the critical FFT loop body, but
fewer bits are needed in the latter microcode to steer the
available parallelism.

Table 4 lists, for each instance, the number of register
needed in the architecture. In particular, in the last
architecture the total number of register is the sum of
those present in the VLIW processor and those
implemented within the “Radix4” unit. The experiments
done confirm that scheduling the FFT SFG, exploiting the
I/O timeshape of the “Radix4” coarse-grain operation,
reduces the number of needed registers.

Table 4. Register Pressure, experimental results

N. of registers Registers
total amount of bits
FFT_org 57 673
FFT_2ALU's 60 710
FFT radix4 58 (42+16) 698 (481+218)

8. Conclusions

In this paper, we presented a new approach to model
and schedule coarse-grain operations in the context of
VLIW processors. The method allows a flexible HW/SW
partitioning where complex functions may be
implemented in hardware as FUs in a VLIW datapath. In
order to schedule efficiently coarse-grain operations, the
scheduling problem itself has been revisited, introducing
the concept of I/O operation’s timeshape. The proposed
“I/O timeshape scheduling” method allows us to schedule
separately the start time of each 1/0O operation’s event
and, ultimately, to stretch the operation’s timeshape itself
to better adapt the operation with its surroundings.

Results in Section 7, show that by using coarse-grain
operations in VLIW architectures, we are able to achieve
high Instruction Level Parallelism without paying a heavy
tribute in terms of microcode memory width. Keeping
VLIW microcode width small is an essential requisite for
embedded applications aiming at high performances and
coping with long and complex program codes.

53

9. References

[J. Brunel, A. Sangiovanni-Vincentinelli, Y. Watanabe,
L. Lavagno, W. Kruytzer and F. Pétrot, “COSY: levels of
interfaces for modules used to create a video system on
chip”, EMMSEC’99, Stockholm, 21-23 June 1999.

P. van der Wolf, P. Lieverse, M. Goel, D. La Hei and K.
Vissers, “An MPEG-2 Decoder Case Study as a Driver for
a System Level Design Methodology”, Proceedings 7th
International Workshop on Hardware/Software Codesign
(CODES'99), May 3-5 1999, pp 33-37.

R. Woudsma et al., “R.E.A.L. DSP: Reconfigurable
Embedded DSP Architecture for Low-Power/ Low-Cost
Telecommunication and Consumer Applications”, Philips
Semiconductor Press.

Texas Instruments, “TMS320C6000 CPU and
Instruction Set Reference Guide”, Literature Number:
SPRU189D March 1999.

Philips Electronics, “Trimedia, TM1300 Preliminary
Data Book”, October 1999 First Draft.

R. Chappel, J. Stark, S.P. Kim, S.K. Reinhardt, Y.N.
Patt, “Simultaneous subordinate microthreading (SSMT)”,
ISCA Proc. of the International Symposium on Computer
Architecture, Atlanta, GA, USA, 2-4 May 1999, pp.186-95.

B. Mesman, A. H. Timmer, J.L. van Meerbergen and J.
Jess, “Constraints Analysis for DSP Code Generation”,
[EEE Transactions on CAD, Vol. 18, No. 1, January 1999,
pp 44-57.

B. Mesman, C.A. Alba Pinto, and K.AJ. van Eijk,
“Efficient Scheduling of DSP Code on Processors with
Distributed Register files” Proc. International Symposium
on System Syntesis, San Jose, November 1999, pp. 100-
106.

W. Verhaegh, P. Lippens, J. Meerbergen, A. Van der
Werf et al., “Multidimensional periodic scheduling model
and complexity”, Proceedings of European Conference on
Parallel Processing EURO-PAR '96, vol.2, Lyon, France,
26-29 Aug. 1996, pp. 226-35.

W. Verhaegh, P. Lippens, J. Meerbergen, A. Van der
Werf, “PHIDEO: high-level synthesis for high throughput
applications”, Journal of VLSI Signal Processing
(Netherlands), vol.9, no.1-2, Jan. 1995, p.89-104.

Frontier Design Inc, “Mistral2 Datasheet”, Danville,
California CA 94506 U.S.A

P.E.R. Lippens, JL. van Meerbergen, W.F.J.
Verhaegh, and A. van der Werf , “Modular design and
hierarchical abstraction in Phideo “, Proceedings of VLSI
Signal Processing VI, 1993, pp. 197-205.

2]

B3]

[4]

(3]
(6]

[7]

(8]

[9

[10]

1)
[12]

