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Abstract

Novel functionality, configurability and higher efficiency
in automotive systems require sophisticated embedded soft-
ware, as well as distributed software development between
manufacturers and control unit suppliers. However, at least
for engine control units, there exists today no well-defined
software integration process that satisfies all key require-
ments of automotive manufacturers.

We propose a methodology for safe integration of auto-
motive software functions where required performance in-
formation is exchanged while each partner’s IP is protected.
We claim that in principle performance requirements and
constraints (timing, memory consumption) for each soft-
ware component and for the complete ECU can be formally
validated, and believe that ultimately such formal analysis
will be required for legal certification of an ECU.

1. Introduction

Embedded automotive software plays a key role in in-
creased efficiency of today’s automotive system functions,
in the ability to compose and configure those functions,
and in the development of novel services integrating dif-
ferent automotive subsystems. Automotive software runs
on electronic control units (ECUs), which are specialized
programmable platforms with a real-time operating system
(RTOS) and domain-specific basic software, e.g. for engine
control. Different software components are supplied by dif-
ferent manufacturers and have to be integrated. This raises
the need for an efficient, secure and certifiable software in-
tegration process, in particular for safety-critical functions.

The functional software design including validation is
largely mastered today through a well-defined process in-
cluding sophisticated test strategies [5]. However, integra-

tion of software functions from different vendors on the au-
tomotive platform requires validation of the integrated sys-
tem’s performance. Here, non-functional system properties,
in particular timing and memory consumption are the dom-
inant issues. At least for engine control units, there exists
today no well-defined software integration process that sat-
isfies all key requirements of automotive manufacturers.

In this paper, we focus on a methodology and the result-
ing flow of information that should be established between
the automotive software manufacturer, different ECU sup-
pliers, RTOS supplier, and system integrator to establish a
certifiable software integration flow for engine electronics
that a) allows to exchange key performance information be-
tween the individual partners and b) at the same time pro-
tects each partner’s intellectual property (IP). We highlight
the shortcomings of todays approach, in particular in the
area of timing analysis. We claim that in principle tech-
niques and required information are available for formal
timing analysis of automotive software at all levels, includ-
ing individual tasks, RTOS overhead, single ECUs and net-
worked ECUs.

The remainder of the paper is organized as follows. In
the following section, we summarize the current practice
in automotive software design and integration, and high-
light the shortcomings from the automotive manufacturer’s
perspective. In Sec. 3, we outline key methodological is-
sues that have to be solved for a safe integration and cer-
tification flow. This is detailed in Sec. 4, where we focus
on RTOS configuration, communication conventions and
memory budgeting, and in Sec. 5, where the key issue,
namely timing analysis, is discussed. We conclude with a
summary and an outlook on future work.



2. Current Practice in Software Integration

The software of sophisticated programmable automotive
ECU is usually composed of three layers. The lowest, sys-
tem layer consists of the RTOS and basic I/O, typically
based on the OSEK [7] automotive RTOS standard. The
next higher level is so called ‘basic software’. It consists of
functions that are already specific to the role of the ECU, but
either simple and designed for more sophisticated functions
to build upon them, or standard automotive function that the
automotive OEM (original equipment manufacturer) does
not want to design herself. Generally speaking, with prop-
erly calibrated parameter values, an ECU with RTOS and
basic software is a working control unit for its specific auto-
motive domain. However, OEM-specific performance char-
acteristics may not be optimal. The system-layer is typically
out-sourced to an RTOS vendor by the ECU supplier. The
ECU supplier then adds basic functions and ships the ECU
with RTOS and basic software to the automotive manufac-
turer.

The highest layer are sophisticated control functions
where the automotive OEM uses her vehicle-specific know-
how to extend and thus improve the basic software, and
to add new features. The automotive OEM also designs
distributed vehicle functions, e.g. adaptive cruise-control,
which span several ECUs. Sophisticated control and vehi-
cle functions present an opportunity for automotive product
differentiation, while ECUs, RTOS and basic functions dif-
ferentiate the suppliers. Each partner therefore has a vested
interest in IP protection.

From the automotive manufacturer’s perspective, a soft-
ware integration flow is preferable where the vehicle func-
tion does not have to be exposed to the supplier, and where
the OEM herself can perform integration for rapid design-
space exploration or even for a production ECU. This can
only be supported in a scenario where software functions
are exchanged and integrated using object codes. The cru-
cial requirement here is that the integrated software must
meet the stringent safety requirements for an automotive
system in a certifiable way.

A key problem that remains largely unsolved is the val-
idation of performance bounds for each software compo-
nent, and formal methods to calculate conservative perfor-
mance bounds for the whole ECU, or even a network of
ECUs. A suitable validation methodology is currently not
in place.

Therefore, in many cases, software can only be inte-
grated by the ECU supplier, who then requires a detailed
design specification from the OEM for executable code-
generation and optimization. While this approach is no
more formal, at least the ECU supplier can claim that the
fully integrated ECU software passed all its tests before
shipping the ECU to the automotive OEM. This potentially
leads to lengthy and costly iteration cycles between OEM
and ECU supplier, with little opportunity for design-space
exploration.

3. Proposed Solution

We are interested in a software integration flow for auto-
motive ECUs where sophisticated control and vehicle func-
tions can be integrated as black-box (object-code) compo-
nents. The automotive OEM should be able to perform the
integration herself for rapid prototyping, design space ex-
ploration and performance validation. The final integration
can still be left to the ECU supplier, based on validated per-
formance numbers that the automotive OEM provides. The
details of the integration and certification flow have to be
determined between the automotive partners and are beyond
the scope of this paper.

We focus instead on the key methodological issues that
have to be solved. On one hand, the methodology must al-
low safe integration of software functions without exposing
IP. On the other hand, performance requirements and con-
straints (timing, memory consumption) for each software
component and the complete ECU have to be formally val-
idated, to be able to certify the ECU. Those software com-
ponents include not only the OEM-provided functions, but
also the basic software functions from the ECU vendor and
the RTOS.

A possible integration and certification flow which high-
lights these issues is shown in Fig. 1. Is consists of a well
defined OSEK configuration, adherence to software inter-
faces, performance analysis and characterization of all enti-
ties involved, and a performance analysis of the complete
system. Partners exchange properly characterized black-
box components. The required characterization is described
in corresponding agreements.
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Figure 1. Proposed integration and certifica-
tion flow

4. Software Integration

In this section, we address RTOS configuration, com-
munication conventions and memory budgeting for a safe
software integration flow.



4.1. RTOS Configuration

Basic RTOS configuration is performed by the ECU
provider. In particular, this includes the number of avail-
able priorities and timer periods. In automotive applica-
tions, there are typically only a few periods required, e.g.
10ms, 20ms and 100ms. Additionally, tasks may run syn-
chronously with engine RPM. The developer of a software
component must specify its required period and its location
in the sequence of functions performed within that period.

In OSEK, which is an RTOS-standard widely used in the
automotive industry [7], the configuration can be performed
in the ‘OSEK implementation language’ (OIL [11]). Tools
then build C or object files that capture the RTOS configura-
tion, and insert calls to the individual functions in appropri-
ate places. With the proper tool-chain, integration can also
be performed by the automotive OEM.

In our experiments, we used ERCOSEK [2], an exten-
sion of OSEK. In ERCOSEK, code is structured into tasks
and processes. An ERCOSEK task consists of a sequence
of processes which are typically written in C. Each task is
assigned a priority and scheduled by the RTOS. Processes
inside each task are executed sequentially. Tasks can ei-
ther be activated periodically with fixed periods using a
timetable mechanism, or dynamically using an alarm mech-
anism. The latter is a very flexible but expensive solution in
terms of memory requirements and execution time. For the
communication between tasks and processes global vari-
ables or state messages can be used. Messages have the
advantage that context-switches cannot lead to data incon-
sistencies. The mechanism is based on copying global to
local variables, and vice versa, at the beginning and end of
a process, respectively, while interrupts are disabled. Fur-
thermore it is possible to protect exclusive resources using
a priority ceiling protocol, to avoid deadlocks.

The configuration of ERCOSEK was realized using the
tool ESCAPE [3]. ESCAPE consists of an ANSI-C checker,
pre-compiler, ESCAPE parser and a code optimizer. ES-
CAPE reads a configuration file that is based on OIL, with
some extensions for features that go beyond the OSEK stan-
dard. The configuration statements are translated by the ES-
CAPE parser into ANSI-C code. The individual software
components called from this code can be pre-compiled,
black-box components. To facilitate object-code linkage,
the usage of the same compiler seems imperative.

4.2. Communication Conventions and Memory
Budgeting

Black-box components with standard software interfaces
are needed to satisfy IP-protection. At the same time, val-
idation, as well as modularity and flexibility requirements
have to be met. Furthermore, interfaces have to be specific
enough that any integrator can combine software modules
into a complete ECU function.

IP protection and modularity are goals that can be com-
bined if read-access are hidden and write-accesses are open.
An open write access generally does not uncover IP. For

example, the fact that a functions in an engine ECU influ-
ences the amount of fuel injected gives away little informa-
tion about the function’s internals. However, the variables
read by the function can yield valuable insight into the so-
phistication of the function.

From an integration perspective, hidden write-accesses
make integration very difficult since it becomes impossible
to determine when a value is potentially changed, and thus
how functions should be ordered. Hidden read-accesses
pose no problem from this perspective.

The ECU vendor, in his role a main integrator, provides
a list of all pre-defined communication variables to the SW-
component providers. Some of these may be globally avail-
able, some may be exclusive to a subset of SW-component
providers. Furthermore, the software integrator budgets and
assigns memory available to each SW-component provider,
separated into memory for code, local data, and private
communication variables.

For each software component, its provider specifies the
memory actually used, and actual write-accesses performed
to shared variables. If the ECU exhibits integration prob-
lems, then each SW-component’s adherence to its specifi-
cation can be checked on the assembly-code level using a
debugger. While this is tedious, it allows a certification au-
thority to determine which component is at fault. An alter-
native may be to use hardware-based memory protection, if
it is supported. Reasonable levels of granularity for mem-
ory access tables (e.g. vendor, function), and the overhead
incurred at each level, still have to be investigated. An anal-
ysis of access violation at compile or link-time, on the other
hand, seems overly complex, and can be easily tricked, e.g.
with hard-to-analyze pointer operations.

Another interesting issue is the trade-off between perfor-
mance and flexibility as a result of basic software granular-
ity. Communication between SW-components is only pos-
sible at component boundaries (see communication mech-
anisms described in Sec. 4.1). While a fine basic software
granularity allows the OEM to augment, replace or intro-
duce new functions at very precise locations, overhead is
incurred at every component boundary. On the other hand,
coarse basic software may have to be modified more fre-
quently by the ECU vendor to expose interfaces that the
OEM requires.

5. Timing Analysis

The second, more complex set of integration issues,
deals with software component and ECU performance, in
particular timing. Simulation-based techniques for timing
validation are increasingly unreliable with growing applica-
tion and architecture complexity. Therefore, formal timing
analysis techniques which consider conservative min-max
behavioral intervals are becoming more and more attractive
as an alternative or supplement to simulation. We expect
that ultimately, certification will only be possible using a
combination of agreed-upon test-patterns and formal tech-
niques.



In formal analysis, the goal is to obtain conservative ex-
ecution time intervals for every system function. Two ap-
proaches can be safely combined:

• Timing of (sub)functions that is input-data
independent, or for which worst- and best-case
input data is known, can be measured.

• These lower-level timing intervals can then be used to
perform min-max calculations for higher-level func-
tions where the timing is input-data dependent and so
complex that worst- and best-case input data is not
known.

Apart from conservative performance numbers, tim-
ing analysis also yields better system understanding, e.g.
through visualization of worst-case scenarios. It is then pos-
sible to modify specific system parameters to assess their
impact on system performance. It is also possible to de-
termine the available headroom above the calculated worst-
case, to estimate how much additional functionality could
be integrated without violating timing constraints.

In the following we indicate that a formal approach is
consistently applicable at all levels (single process, RTOS,
single ECU and networked ECUs), thus opening the door
to formal timing analysis for the certification of automotive
software.

5.1. Single Process Analysis

Formal single process timing analysis determines the
minimum and maximum execution time of one activation
of a single process assuming an exclusive resource. Recent
analysis approaches, e.g. [8], first determine execution time
intervals for basic blocks. Using an integer linear program-
ming (ILP) solver, they then find a shortest and a longest
path through the process based on basic block execution
counts and cost, leading to an execution time interval for
the whole process. Often, the designer has to bound loops
and exclude infeasible paths to tighten the process-level ex-
ecution time intervals.

For architectures with pipelines and caches, execution
time intervals for basic blocks can be rather pessimistic be-
cause empty pipelines or cache flushes have to be assumed.
First commercial tools like AbsInt [4] consider the static
cache behavior to tighten interval bounds. However, the in-
herent pessimism when considering each basic-block indi-
vidually remains.

If input data independent sequences of basic blocks
(process segments) and the resulting address access se-
quence are considered, then established cache tracing tech-
niques can be applied . This approach significantly reduces
the problem size of previous approaches based on transi-
tion graphs for single basic blocks. For input data de-
pendent control structures between process segments, data
flow analysis can be applied to predict cache line con-
tents. Cache analysis results can then be accounted for
when calculating execution time intervals for process seg-
ments. The process-level execution time intervals are then

determined using the known technique from [8] for the re-
maining data dependent control structures between process
segments instead of basic blocks. This methodology can
lead to much tighter execution time intervals compared to
previous approaches, as has been shown with the prototype
tool SYMTA/P [17].

To evaluate the applicability of SYMTA/P, we used it to
identify segments in C-code taken from a real-world engine
control function. Each segment boundary was then instru-
mented with a trigger point [18, 17], in this case an inline-
assembly store-bit instruction. The target platform was a
TriCore evaluation board with Tasking EDE. Using appro-
priate stimuli, we executed each segment and recorded the
setting of a special bit with a logic state analyzer (LSA).
With this approach, we were able to obtain clock-cycle-
accurate measurements for each segment. These numbers,
together with path information, were then fed into an ILP
solver, to obtain minimum an maximum execution times for
the example code.

The applicability of SYMTA/P was encouraging. How-
ever, inter-procedural analysis has to be improved, and a
few minor issues have to be resolved before larger experi-
ments are conducted.

5.2. RTOS Analysis

Apart from influencing the timing of individual tasks
through scheduling, the RTOS itself may consume a con-
siderable amount of processor time. The RTOS has to
activate tasks, make scheduling decisions, and to termi-
nate tasks. Additionally, low-level device drivers, e. g. sys-
tem timers and I/O, require processor time. Typical RTOS
primitives are described e.g. in [1]. The most important
RTOS influences are: task or context switching including
start/preemption/resumption/termination of tasks; and gen-
eral OS overhead, including periodic timer interrupts and
some house-keeping functions. For formal timing analysis
to work, these numbers need to be considered in a conser-
vative way.

One one hand, we need to determine execution time in-
tervals for each RTOS primitive, and their dependency on
the number of tasks scheduled by the RTOS. The second
interesting question concerns patterns in the execution of
RTOS primitives, in order to derive the worst- and best-case
RTOS overhead for task response times.

Ideally, this information would be provided by the RTOS
vendor. She has detailed knowledge about the internal be-
havior of the RTOS, allowing her to perform appropriate
analyses that cover all corner cases. However, it is virtually
impossible to provide numbers for all combinations of tar-
gets, compilers, libraries, etc. Alternatively, the RTOS ven-
dor could provide test patterns that the integrator can run on
her own target and in her own development environment to
obtain the required worst- and best-case values. Some OS
vendors have taken a step in that direction, e.g. [10].

In our case, we did not have sufficient information avail-
able, and thus decided to measure the influence of RTOS
primitives ourselves. We performed our measurements by
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Figure 2. Waveform: Measurement of two Preemptive Tasks A and B

instrumenting accessible RTOS functions, using the LSA-
based approach described in Sec. 5.1. This is not ideal,
since it is tedious work and does not guarantee corner-
case coverage. The instrumentation approach described in
Sec. 5.1 is limited to the C-code level. Fortunately, the ES-
CAPE tool chain (Sec. 4.1) generates RTOS configuration
functions in C, which then call the corresponding RTOS
functions (object code). The C functions provide hooks
for instrumentation. We inserted code that generates unique
port signals before and after each RTOS function call. We
measured:

TT INT TimeTable Interrupt: Executed whenever the time
table needs to be evaluated to start a new task.

PH PreemptionHandler: Executed whenever a task has to
preempt the actually running one.

X ACT ActivateTask X: Executed whenever a task is acti-
vated (i.e. ready for execution).

X CON P ProcessContainer: Each task X has a process
container that subsequently calls all processes within
this task.

X CON T TerminateTask: Executed after task X has fin-
ished.

X PROC Y Process: This is the actual user process Y
within task X.

Our first set of measurements indicates two things. First,
for a given RTOS configuration and a given task set, the
execution time of RTOS primitives varies little from mea-
surement to measurement. This supports our claim that
the RTOS vendor should be able to appropriately charac-
terize the timing of each RTOS primitive, or alternatively
provide suitable tests such that the user can determine tim-
ing intervals for her architecture herself. Second, as ex-
pected we have observed that RTOS overhead prolonging
task response times varies from measurement to measure-
ment. However, patterns in the execution of RTOS prim-
itives can be found and analyzed. Therefore, we believe

that it is generally possible to calculate conservative bounds
on RTOS overhead for task response time calculation. The
RTOS vendor should be able to provide rules how this over-
head can be calculated.

A sample pattern of RTOS primitives that is traversed
for one execution of one task is shown in the LSA printout
in Fig. 2. A system timer generates a time-table interrupt
(step 0). This selects and activates the corresponding tasks
by executing the ActivateTask function (step 1). Although
not visible in the source code, based on the LSA output it
seems that this in turn generates a software interrupt which
then starts the preemption handler. Since all tasks seem to
be using the same preemption handler, we distinguish be-
tween start and stop using two different I/O signals in order
to record recursive interrupts. The preemption handler calls
the dispatcher, which seems to start the task, i. e. the pro-
cess container (step 3), which finally executes the process
(step 4). After completion, control returns to the process
container (step 5), and since there is only one process in
the task, the TerminateTask function is executed (step 6).
Finally, the preemption handler finishes (step 7) and a pre-
empted task is resumed (step 8).

In Fig. 2, we also show three different scenarios for task
interference. Depending on the order in which tasks A and
B are activated by TTINT (A before B in scenario 1, A and
B at the same time in scenario 2, A after B in scenario 3),
the tasks experience different delays. Task A is the lower-
priority task, task B the higher-priority task. One interest-
ing observation is that preemption handlers seem to have
the same priority as their corresponding task, since task A’s
preemption handler is delayed until the completion of task
B in scenarios B and C. Another interesting observation is
that the ActivateTask functions have a higher priority than
all tasks. Therefore, the activation of lower-priority task
A can delay or preempt the execution of higher-priority
task B (scenarios 2 and 3, respectively). These observa-
tions show that it is important to model the RTOS at such
a detailed level to reliably calculate its influence of task re-
sponse times. The observed patterns also indicate that it
generally should be possible to provide formulas for these



calculations.

5.3. Single and Networked ECU Analysis

Single ECU analysis builds upon single-process perfor-
mance (Sec. 5.1) and RTOS performance results (Sec. 5.2).
It employs formal analysis techniques to determine schedu-
lability for all processes running on the ECU based on
known process-activation patterns.

Our system consists of independent, periodic tasks with-
out data-dependencies. The tasks are scheduled by a fixed-
priority scheduler, and each task’s deadline is equal to its
period. As a first approximation, such a system can be an-
alyzed using the static-priority preemptive analysis devel-
oped by Liu and Layland [9]. We can account for the high
priority level of the ActivateTask functions (see previous
section) by treating them as independent periodic tasks at
a very high priority level. Periodic timer interrupts can be
captured the same way. The TerminateTask function and the
preemption handlers can be added to a task’s internal (core)
execution time.

ERCOSEK additionally implements the priority ceiling
protocol [15] to avoid deadlocks when accessing exclu-
sive resources, and to reduce priority inversion influences.
These influences can also be taken into account during anal-
ysis using the techniques presented in [15].

At this point, we are still confined to single ECU ap-
plications. Heterogeneous distributed architectures require
more complex analysis techniques, such as developed in
[13, 14, 12]. We intend to use event models to couple anal-
ysis techniques for single ECUs and busses following the
ideas in [13, 14].

6. Conclusion

In this paper we focused on key methodological issues
that have to be solved for certifiable integration of auto-
motive software components, where required performance
information can be exchanged while each partner’s IP is
protected. The proposed component characterization and
agreements should allow both the automotive OEM and the
ECU vendor to assume the integrator role. The agreements
include conventions for RTOS configuration, task commu-
nication and memory budgeting. The main issue, however,
is performance validation, in particular the validation of
timing. We presented methods for performance characteri-
zation of software functions and the RTOS. We expect that
ultimately each partner will have to characterize his soft-
ware components appropriately. Fist promising steps to-
wards performance characterization of her RTOS have been
taken by at least one OS-vendor [16]. Timing analysis of
the complete ECU can then be performed by any integrator
using appropriate scheduling analysis techniques.

We are currently working on performance analysis of a
single ECU using the techniques described in this paper.
We are planing to extend our work to networked ECUs us-
ing the techniques from [13, 14]. Also, the improvement in

analysis bound tightness when process and system contexts
are considered has to be investigated [6].
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