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Abstract

To meet the demands of modern architectures, optimizing
compilers must incorporate an ever larger number of increas-
ingly complex transformation algorithms. Since code transfor-
mations may often degrade performance or interfere with sub-
sequent transformations, compilers employ predictive heuris-
tics to guide optimizations by predicting their effects a priori.
Unfortunately, the unpredictability of optimization interaction
and the irregularity of today’s wide-issue machines severely
limit the accuracy of these heuristics. As a result, compiler
writers may temper high variance optimizations with overly
conservative heuristics or may exclude these optimizations en-
tirely. While this process results in a compiler capable of gen-
erating good average code quality across the target benchmark
set, it is at the cost of missed optimization opportunities in in-
dividual code segments.
To replace predictive heuristics, researchers have proposed

compilers which explore many optimization options, select-
ing the best one a posteriori. Unfortunately, these existing it-
erative compilation techniques are not practical for reasons
of compile time and applicability. In this paper, we present
the Optimization-SpaceExploration (OSE) compiler organiza-
tion, the first practical iterative compilation strategy applica-
ble to optimizations in general-purpose compilers. Instead of
replacing predictive heuristics, OSE uses the compiler writer’s
knowledge encoded in the heuristics to select a small num-
ber of promising optimization alternatives for a given code
segment. Compile time is limited by evaluating only these
alternatives for hot code segments using a general compile-
time performance estimator. An OSE-enhanced version of
Intel’s highly-tuned, aggressively optimizing production com-
piler for IA-64 yields a significant performance improvement,
more than 20% in some cases, on Itanium for SPEC codes.

1. Introduction

As processors become more complex and incorporate addi-
tional computational resources, aggressively optimizing com-
pilers become critical. This dependence on compiler support
is especially pronounced in non-uniform-resource, explicitly-
parallel platforms like the Intel Itanium, Philips TriMedia, and
Equator MAP/CA [1, 2, 3]. In these and other complex ar-

chitectures, the compiler can no longer rely on simple met-
rics, such as instruction count, to guide optimization. Instead,
the compiler must carefully balance execution resource utiliza-
tion, register usage, and dependence height while attempting to
minimize any unnecessary stalls due to dynamic effects such
as cache misses and branch mispredictions.

With aggressive, wide-issue machines, optimizations are al-
most never universally beneficial. For example, optimizations
intended to enhance instruction-level parallelism (ILP) typi-
cally reduce dependence height in exchange for increased reg-
ister pressure and instruction count. In order to determine how
aggressively to apply these optimizations, the compiler cannot
simply consider how they affect the current code. Instead, the
compiler must anticipate changes in dependence height, reg-
ister pressure, and resource utilization caused by future opti-
mizations and weigh these factors against available resources
on the target machine. Often the interaction between the op-
timization under consideration and subsequent optimizations
in the context of the target microarchitecture is the primary
consideration in deciding if and how aggressively to apply the
optimization.

In an effort to achieve maximum performance, most mod-
ern compilers employ predictive heuristics to decide where
and to what extent each code transformation should be ap-
plied [4, 5]. A predictive heuristic tries to determine a priori
whether or not applying a particular optimization will be ben-
eficial. To obtain full benefit from an optimization, the ideal
predictive heuristic would predict the exact effect of applying
the optimization on emitted code quality. Unfortunately, the
enormous complexity of this task limits the precision of pre-
dictive heuristics in practice. In an effort to make the best of
the situation, compiler writers carefully tune predictive heuris-
tics to achieve the highest average performance over a repre-
sentative application set for the target microarchitecture. Un-
fortunately, for modern architectures the resulting optimization
decisions remain suboptimal for many individual code seg-
ments, leaving significant potential performance gains unre-
alized.

To address the limitations of predictive heuristics, re-
searchers have proposed compiling a program multiple times
with different optimization configurations. By emitting the
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best code produced as evaluated after applying several op-
timization configurations the predictive heuristics are elimi-
nated. Results from prior work illustrate the shortcomings of
predictive heuristics and suggest that an iterative compilation
approach holds much promise [6, 7, 8]. However, since prior
techniques are designed for simple architectures, small loop
kernels, or application specific processors, the results are not
directly applicable to modern general-purpose architectures
and applications. More importantly, these techniques are not
practical in many environments since they typically incur pro-
hibitively large compile times by exhaustively searching the
optimization space or by evaluating each configuration via full
execution.

In this paper, we present the first general, practical ver-
sion of iterative compilation for use in optimizing compil-
ers for modern microarchitectures. To this end, we present a
technique called Optimization-Space Exploration (OSE). Like
other iterative compilation schemes, a compiler using OSE ex-
plores the space of optimization configurations through mul-
tiple compilations. However, OSE does the following to ad-
dress the compile time and generality limitations of existing
approaches:

� Rather than eliminate the predictive heuristics, OSE uses
the experience of the compiler writer as encoded in the
heuristics to restrict the number of configurations ex-
plored.

� OSE uses a realistic performance estimator during compi-
lation that considers resource utilization, dynamic cache
effects, instruction fetch, and branch prediction to esti-
mate code performance, eliminating the need for evalua-
tion by code execution.

� Recognizing that each code segment in a program will re-
spond differently to transformations, OSE selects a cus-
tom configuration for each code segment.

� During exploration of the optimization space, OSE se-
lects the next optimization configuration to consider by
observing the characteristics of previous configurations.

To evaluate the concept, we create an OSE-enabled version
of the Intel C++ Compiler for the Intel Itanium Processor ver-
sion 6.0, also known as Electron, Intel Corporation’s highly-
tuned, aggressively optimizing compiler for IA-64. We evalu-
ate this compiler, calledOSE-Electron, with respect to compile
time and performance gained. As part of this work, we also
demonstrate that predictive heuristics sacrifice performance on
general-purpose EPIC architectures even in high quality com-
pilers.

The rest of this paper is organized as follows. Section 2
surveys prior work and illustrates the difficulty of designing
good predictive heuristics by characterizing iterative compila-
tion’s potential on an EPIC architecture. Section 3 presents the

Optimization-Space Exploration technique and illustrates how
it can be used to limit compile time and address other short-
comings of existing approaches. Section 4 describes and eval-
uates the OSE-Electron compiler. The paper concludes with a
summary of contributions in Section 5.

2. The Predictive Heuristic Problem

Since optimizations are not universally beneficial, tradi-
tional compilers control optimizations by predictive heuristics.
However, for highly parallel architectures, especially those
that rely heavily on compiler support for performance, it is
very difficult to devise a predictive heuristic that does well in
all cases.

2.1. A Recognized Problem

The failure of heuristics to allow optimizations to live up to
their maximum potential is a well known problem. This prob-
lem is caused both by the complexity of the target microarchi-
tecture and by the difficulty of characterizing the interactions
that occur between different optimizations. Previous work has
provided an experimental framework for constructing different
optimizers with varying parameters and phase orders [9]. This
same work also provides a theoretical characterization of how
optimizations enable and disable future optimization opportu-
nities along with a study of how frequently this enabling and
disabling occurs. However, this characterization does not di-
rectly lead to a mechanism to discover when an optimization
will be beneficial, especially for complex microarchitectures.

Additional work has been done to address particularly nasty
optimization interactions and to develop better heuristics to
circumvent performance pitfalls. Heuristics that try to avoid
register spilling due to overly aggressive software pipelining
have been proposed [10, 11]. Despite their efforts, the authors
describe a range of cases where their heuristics fail to make the
best decision. Other work addresses the potentially harmful
interference between scheduling and register allocation with
novel heuristic techniques [12, 13, 14, 15]. Continuing ef-
forts in this area indicate that the problem is far from solved.
Hyperblock formation and corresponding heuristics have been
proposed to determine when and how to predicate code [16].
However, even with these techniques, the resulting predicated
code is not always better and techniques to reinsert branch con-
trol flow that mitigate, but do not totally eliminate, the negative
effects of over-predication have been proposed [17].

These works are just a sample of the research done to ad-
dress problems of predictive heuristics. The continuing effort
to design better predictive heuristics and to improve compiler
tuning techniques indicates that the problem of determining if,
when, and how to apply optimizations is unsolved.

2.2. The Promise of Iterative Compilation

Recognizing that predictive heuristics often sacrifice perfor-
mance, others have proposed iterative compilation techniques.
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Instead of using predictive heuristics, existing compilers using
iterative compilation optimize a program in many ways, mea-
sure the quality of all the generated code versions, and then
choose the best one. Thus, iterative compilation allows for
decisions to be made based on actual generated code rather
than predictions of final code characteristics. Consequently,
iterative compilation techniques generally produce code that
performs better. Iterative compilation may be performed for a
portion of the optimization sequence, such as in [18], or for all
optimizations as in [8].

Cooper et al. [8] propose a compilation framework called
adaptive compilation which explores different optimization
phase orders at compile time. The results of each phase order
are evaluated a posteriori using a rudimentary objective func-
tion that counts the static number of instructions. Adaptive
compilation does not explore compilation parameters other
than phase ordering. The basic shortcoming of this technique
is that no method to prune the search space has yet been pro-
posed. As a result, adaptive compilation’s proof-of-concept
experiment, which involved a small kernel of code, took about
a year to complete. Although impractical in terms of compile
time, this experiment resulted in impressive performance ben-
efits, thus establishing that this technique is promising.

The OCEANS compiler project group [18] has also ex-
plored iterative compilation schemes. Kisuki et al. implement
a compiler that traverses the optimization space for loop un-
rolling and tiling and runs all the produced code to choose
the best version of a loop kernel [6]. Bodin et al. propose
an iterative compilation technique that balances code size and
performance [19]. These approaches have large compile times
because they search a prohibitively large optimization space
and they involve running each version of the program in order
to gauge its performance. Since the OCEANS work targets
small kernels in the embedded application arena, the authors
do nothing to address the large compile times.

Wolf et al. [20] present an algorithm for combining five dif-
ferent high level loop transformations, namely fusion, fission,
unrolling, interchanging, and tiling. For each set of nested
loops the algorithm considers various promising combinations
of these transformations. The algorithm stops short of gener-
ating code for each combination of transformations; instead,
it uses a performance estimator which accepts the sequence of
loop transformations as an argument. The performance esti-
mator can generate an estimate for the performance realized
by applying the given sequence of loop transformations with-
out actually transforming the code. While not strictly iterative
compilation, this work realizes many of the benefits. When
evaluated on scientific code, the proposed algorithm is efficient
in terms of both compile time and final code quality. However,
the algorithm cannot be generalized to incorporate optimiza-
tions other than the original five, since the performance esti-
mation is based on thorough understanding of the interactions
between these particular, well-behaved, and predictable opti-
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Figure 1: Performance of code on suite, benchmark,
and function code segment sizes. Speedup relative to
the best standard optimization heuristic configuration in
Electron.

mizations.
While the results from these works are promising, none of

these techniques are useful for general-purpose compilation.
Existing iterative compilation works are limited to specific ar-
chitectures, limited to specific optimizations, or suffer from
unacceptably large compile times.

2.3. Predictive Heuristics on EPIC Architectures

To characterize the performance opportunities sacrificed by
the use of predictive heuristics, we explore the effect of a va-
riety of optimization options applied at different code granu-
larities. Electron, Intel’s high quality optimizing compiler for
Itanium, provides a number of optimization control parame-
ters accessible either to the user on the command line or to
the compiler writer internally. From these, a reduced set of
parameters, shown in Table 1, was selected based upon how
difficult it is to make the corresponding optimizations deliver
consistent speedup on Itanium codes. Various settings of these
parameters were tried to find the configuration delivering the
best average code performance at the suite-, benchmark-, and
function-level for a set of SPEC benchmarks. The details of the
benchmark selection and experimental testbed are described in
Section 4.

Figure 1 shows the results of this experiment. All speedups
are shown versus a baseline compilation using Electron with
the -O2 option and with profile guided optimizations turned
on. (The -O2 option was selected as a baseline since it gen-
erates the best performing code on average, as reported by In-
tel.) The first column in the graph shows the performance of
the benchmark using the configuration that gave the best aver-
age performance across all benchmarks. The second column
shows the performance of each benchmark using the configu-
ration that gave the best performance for each benchmark. The
third column shows the performance of each benchmark built
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by compiling each function with the configuration that gives
the best performance for that function.

Figure 1 illustrates that the default compilation path in
Electron did not yield the best average performance for these
benchmarks. However, this is probably due to the fact that In-
tel has tuned Electron for a much larger set of benchmarks than
we considered. Notice that function-level exploration gen-
erated code that consistently outperformed the baseline con-
figuration, suite-level exploration, and benchmark-level explo-
ration. In two cases, the code produced by function-level ex-
ploration performed 28% better than the baseline. Thus, this
experiment demonstrates that predictive heuristics do sacrifice
performance, even in a high-quality aggressively-tuned com-
mercial compiler.

It is worth noting that predictive heuristics are not ideal in
other compilers as well. For example, in one small experi-
ment, we varied the loop unrolling factor used by the IMPACT
compiler [21] incrementally from 2 to 64. The benchmark
132.ijpeg performs best for a loop unrolling factor of 2,
which is the baseline configuration. However, a performance
increase of 8.81% can be achieved by allowing each function
in 132.ijpeg to be compiled with a different loop unrolling
factor. In a bigger experiment involving 72 different configu-
rations, the individually best configurations for 130.li and
008.espresso achieved 5.31% and 11.74% improvement
over the globally best configuration respectively.

3. Optimization-Space Exploration

In this section, we present the Optimization-Space Explo-
ration (OSE) technique. A compiler that implements OSE op-
timizes each code segment with a variety of optimization con-
figurations and examines the code after optimization to choose
the best version produced. Figure 2 contrasts OSE with tradi-
tional compilation methods employing only predictive heuris-
tics.

The traditional compilation approach is shown in Figure 2a.
A sequence of optimizing transformations, controlled by a set
of fixed heuristics, is applied to each code segment. Only one
version of the code exists at any given time and this version
is passed from transformation to transformation. In contrast,
an OSE compiler (Figure 2b) simultaneously applies multiple
transformation sequences on each code segment, thus main-
taining multiple versions of the code. Each version is opti-
mized using a different optimization configuration. The com-
piler emits the fittest version as determined by the performance
evaluator.

Ideally, the compiler would perform an exhaustive
optimization-space exploration by dividing the program up
into all possible sets of code segments, compiling each code
segment with every possible optimization configuration, test-
ing each program assembled from all combinations of opti-
mized segments on the target architecture, and selecting the
best program for emission. However, such an approach is
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Figure 2: Compilers with (a) a single fixed configuration,
(b) Optimization-Space Exploration over many configu-
rations.

clearly intractable. In order for OSE to be practical, the com-
piler must limit the number of optimization configurations ex-
plored for each code segment, rapidly select the best of the
different compiled versions of each code segment, and only
apply OSE to the important code segments of a program.

The remainder of this section is arranged as follows. First,
Section 3.1 describes how to limit the number of optimization
configurations explored at compile-time. Second, Section 3.2
describes how to rapidly select the best version of each code
segment. Third, Section 3.3 describes selection of code seg-
ments for which OSE will be applied.

3.1. Limiting the Search Space

The full optimization space for a compiler is derived from
a set of optimization parameters which control the application
of optimizations. Some optimization parameters control the
application of a code transformation directly by enabling or
disabling it. Other parameters control the aggressiveness of
predictive heuristics, which in turn decide where to apply a
code transformation. As an example, an optimization param-
eter can determine whether if-conversion should be applied,
whereas another parameter can specify the maximum number
of times a loop can be unrolled, or whether loops with early
exits should be candidates for software pipelining.

For each parameter there is a set of legal values. A set
of parameter-value pairs forms an optimization configuration.
The set of optimization configurations forms the optimization
space. In general, if a configuration does not specify a value
for a parameter, a default value is used.

Unfortunately, the full set of configurations for a compiler is
too large to explore naı̈vely at compile-time. To limit the num-
ber of configurations explored for any given code segment, we
first remove any configuration that is not likely to contribute
to performance improvements. Configurations were typically
excluded because the optimizations they controlled were well
tuned, because they performed consistently worse than the de-
fault configuration, or because they were too similar to other
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Parameter Values Meaning

Optimization level (-On) 2 This is the default optimization level. The standard optimiza-
tions are register allocation, scheduling, register variable
detection, common subexpression elimination, dead code
elimination, variable renaming, copy propagation, strength
reduction-induction variable optimizations, tail recursion
elimination, and software pipelining [22].

3 Perform all -O2 optimizations plus more aggressive opti-
mizations that may even degrade performance. These op-
timizations include aggressive loop transformations, data
prefetching, and scalar replacement [22]. This optimization
level also affects the loop classification heuristics used to ap-
ply other optimizations so that they do not interfere with loop
optimizations designed to improve cache performance.

High-level optimization (HLO) level 2,3 Like O2 and O3, but only for the high level optimizer.
Microarchitecture type - Merced vs.
McKinley

0 or 1 A general parameter that affects the aggressiveness of many
optimizations.

Coalesce adjacent loads and stores TRUE or FALSE Enable coalescing multiple adjacent loads or stores into a
single instruction.

HLO phase order TRUE Perform High Level Optimization before normalizing loops.
The important effect here is that this setting also turns off the
block unroll and jam optimization.

FALSE Perform High Level Optimization after normalizing loops.
This is the default value for Electron.

Loop unroll limit 0,2,4,8 Maximum number of times to unroll a loop.
Update dependencies after unrolling TRUE or FALSE By not updating data dependences after unrolling, the ag-

gressiveness of optimizations performed on unrolled loops
is limited.

Perform software pipelining TRUE or FALSE Enable/disable software pipelining
Heuristic to disable software pipelining TRUE or FALSE Normally Electron will forgo software pipelining if the max-

imum predicted initiation interval is smaller than the mini-
mum possible initiation interval. If false, this parameter will
force Electron to perform software pipelining.

Allow control speculation during soft-
ware pipelining

TRUE or FALSE Enable/disable control speculation during software pipelin-
ing.

Software pipeline outer loops TRUE or FALSE Software pipeline an outer loop of a loop nest after software
pipelining the inner loop.

Enable if-conversion heuristic for soft-
ware pipelining

TRUE or FALSE This flag determines if a heuristic is used to determine
whether to if-convert a hammock in a loop that is being soft-
ware pipelined, or to just if-convert every hammock in the
loop regardless of branch bias and resource utilization.

Software pipeline loops with early exits TRUE or FALSE Controls whether software pipelining will operate on loops
with early exits.

Enable if-conversion TRUE or FALSE Controls whether predication techniques should be applied.
Enable non-standard predication TRUE or FALSE Enables/Disables predication for if blocks without else

clauses.
Enable pre-scheduling TRUE or FALSE Enables/Disables a scheduling phase performed before reg-

ister allocation.
Scheduler ready criterion 10%,15%,30%,50% Percentage of execution ready execution paths a ready in-

struction must be on to be considered for scheduling.

Table 1: Parameters and values defining the search space used in evaluation.
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configurations.
To further limit the number of configurations tried on any

given code segment, OSE exploits a key insight into the na-
ture of how the success of different optimizations is correlated.
The performance of any given code segment is largely deter-
mined by a few critical optimizations, but these optimizations
may differ between code segments. These critical optimiza-
tions not only have a large performance impact on the code
segment, but their success is highly correlated with the success
rate of other optimizations. For example, if loop unrolling is
a critical optimization for a certain code segment, and small
amounts of unrolling are best, then software pipelining may
also be a good optimization to try on this code segment. This
key insight allows the optimization space to be organized at
compiler construction time in a way that allows a compile-
time search of the optimization space to be limited to a few
correlated optimization configurations. This can yield signifi-
cant performance improvements with very little compile time
overhead.

Intuitively, the compile-time search approach is that the
compiler, at compile time, “learns” about the code by try-
ing some optimization configurations. Then the compiler tries
other optimization configurations it suspects will be success-
ful based on the success of the configurations it has already
tried. After applying these optimizations, more information is
learned and thus the compiler can choose still more configura-
tions to try.

3.1.1. Compiler Construction-time Pruning

The first step in constructing an OSE enabled compiler is to
limit at compiler-construction time the total number of con-
figurations that will be considered at compile time. The goal
of the pruning process described below is to construct a set 

with at most N configurations, which will then be used during
compile-time exploration. Optimization configurations for 

are chosen by determining their impact on the performance of
a representative set of code segments C.

We begin by constructing the set 
1 which consists of the
default configuration and all configurations that assign a non-
default value to a single parameter. Each code segment in the
representative set C is then compiled according to each config-
uration in 
1. The performance of each version of each code
segment is measured by running it on real hardware, and the
mean speedup that would result from exploring all parameters
in 
1 is determined. Next, the “value” of each configuration
in 
1 is measured. One can determine how “valuable” each
configuration is by removing it from the exploration and com-
puting the reduction in the mean speedup. The least “valuable”
configuration is then permanently dropped from 
1, and the
same process is repeated until at most N configurations are
left.

In the next step, the set 
2 is constructed by forming all

the meaningful combinations (set unions) of the configurations
remaining in 
1, that is all combinations except the ones as-
signing more than one value to the same parameter. The set

2 is then refined to at most N configurations by repeating the
process described in the above paragraph. Then the set 
3 is
formed by combining the configurations remaining in 
2, and
so on. The process stops when no new configurations can be
generated, or when the increases in the mean speedup become
negligible. The final set, 
m, is then regarded as the “optimal”
set of configurations 
.

3.1.2. Characterizing Configuration Correlations

Identifying the correlations between optimization configura-
tions in 
 is the next phase of the compiler construction-time
tuning process. These correlations will be used at compile time
to prune the search space on a code segment by code segment
basis as outlined earlier. We represent the set of configurations
for the compile-time exploration engine as a tree, called the op-
timization configuration tree. All the siblings in a given level
of the tree correspond to critical configurationswhich identify
which other optimizations may be critical for a code segment.
The children of any node in the tree correspond to configura-
tions which may be critical if the current node corresponds to
a critical configuration.

The algorithm to build this tree, shown in Figure 3, is fairly
straightforward. First, from the N configurations in 
, choose
the m optimization configurations that yield the most speedup
across the set of all representative code segments, C, call these
configurations oi; i = 1::m.1 Make these the children of the
root node of the tree. Let pj;i be the performance for code
segment cj generated by optimization configuration oi. The
algorithm partitions the set of representative code segments, C,
into m disjoint sets, Ci, such that cj 2 Ci if argmax

k=1::m

(pj;k) =

i. To generate the rest of the tree, the algorithm repeats the
above process for each oi to determine its successors using Ci

instead of C.
Of course, this process could continue for quite some time,

so the algorithm needs to limit the size of the tree generated.
We observe that the likelihood that a given configuration will
be better than any of its predecessors decreases as the algo-
rithm proceeds deeper into the tree. Thus, the algorithm can
simply limit the depth of the tree, and terminate construction
of a subtree when it reaches this cut-off depth.

3.1.3. Compile-time Search

An OSE compiler searches the optimization tree using the al-
gorithm shown in Figure 4. First, it compiles each code seg-
ment with a small set of optimization configurations, the chil-

1Recall that we have compiled and measured the run-time of the training
code segments with all possible configurations that will be used during com-
pilation.
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1 Construct O = set of m most important configurations
in 
 for all code segments in C.

2 Choose all oi 2 O as the successor of the root node.
3 For each configuration oi 2 O:
4 Construct Ci = fcj : argmax

k=1::m

(pj;k) = ig.

5 Recursively repeat steps 3 and 4 to find oi’s
successors, limiting the code segments used to Ci,
and the configurations used to 
 nO.

Figure 3: Pseudo-code for building the OSE search tree

1 For each code segment:
2 Let o be the root of the optimization tree.
3 Do:
4 For each child oi of o:
5 Compile the code segment with configuration oi.
6 Estimate the performance of the generated code.
7 Let o be the oi that corresponds to the best code.
8 While o is not a leaf.
9 Emit the code corresponding to the configuration

that resulted in the best estimated performance.

Figure 4: Pseudo-code for the OSE technique

dren of the root of the tree. It then chooses the optimization
configuration from this set that maximizes the estimated per-
formance for the code segment under consideration (perfor-
mance estimation is discussed in Section 3.2); this is a critical
configuration for the current code segment. Next, the compiler
will examine the children of the node corresponding to this
critical configuration to find other critical configurations. This
process is repeated until a path from the root to a leaf of the
optimization tree is found. The configuration along this path
that yields the best estimated performance is chosen as the fi-
nal configuration used by the compiler. The final configuration
is used to generate the final code for the code segment under
consideration. The net effect of the algorithm, presented in
Figure 4, is to perform a breadth first search of a pruned tree
of optimization configurations, as shown in Figure 5.

3.2. Efficient Code Quality Evaluation

At some point in the process, OSE must evaluate two pieces
of machine code and determine which one is better by some
metric. In prior discussion, this evaluation was considered pos-
sible, but not discussed in detail. Ideally, the OSE compiler
would compile the whole program in all possible ways and
then run each version of the final program. The runs would
be timed, and the fastest program would be selected. This
would allow the OSE compiler to consider all code segments
and even inter-code-segment interactions such as certain cache
and branch effects. To keep compile time reasonable, however,
the OSE compiler will need to find the best code on a code
segment by code segment basis, neglecting most inter-code-
segment interactions.

The OSE compiler performs this selection using static per-
formance estimation. In this approach, the compiler estimates
code segment performance using a machine model and pro-
file data. Previous work shows that good results are obtain-
able with this type of performance estimation [23]. Of course,
each target architecture will require a performance estimator
suitable for the execution model of the machine, be it EPIC,
VLIW, or superscalar. Since the particulars of the estimator
are dependent on the implementation of OSE, we defer discus-
sion of the estimator to Section 4.

3.3. Limiting the Application of OSE

As a final technique to limit compilation time, an OSE com-
piler limits application of multiple optimization configurations
to hot code segments. It is a common observation that most of
the execution time is spent in a small fraction of the code. The
OSE compiler can limit its search efforts to that important frac-
tion of the code saving valuable compilation time. These hot
code segments can be identified by profiling using instrumen-
tation or, preferably, hardware performance counters during a
run of the program.

4. Evaluating OSE

In order to evaluate the effectiveness of the OSE approach,
we retrofitted Electron, the Intel C++ Compiler for the Intel
Itanium processor, to implement OSE. The Itanium proces-
sor makes a good target architecture since explicitly parallel
machines depend heavily on good compiler optimization [21].
Electron is among the best compilers for the Itanium platform,
thus providing a credible experimental baseline.

4.1. OSE-Electron Implementation

This section describes implementation details of OSE in In-
tel’s Electron compiler for Itanium. This implementation was
used to produce the experimental results in Section 4.2.

4.1.1. Exploration Driver

The base Electron compiler compiles code in the following
steps:
1 Profile the code.
2 For each function:
3 Compile to the high-level IR.
4 Optimize using high-level optimizations (HLO).
5 For each function:
6 Perform inlining followed by a second HLO pass.
7 Perform code generation (CG), including software

pipelining and scheduling.

In retrofitting Electron to build OSE-Electron, we inserted
an OSE driver that controls the exploration process and decides
which functions will have OSE applied after the first pass of
optimization over all the routines. The OSE driver searches an
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5 64
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Figure 5: Automatically generated search tree annotated based on a hypothetical run of OSE

optimization space following the approach described in Sec-
tion 3. The algorithm used in the retrofitted OSE-Electron is
as follows:
1 Profile the code.
2 For each function:
3 Compile to the high-level IR.
4 Optimize using HLO.
5 For each function:
6 If the function is hot:
7 Perform OSE on second HLO pass and CG.
8 Emit the function using the best configuration.
9 If the function is not hot, use standard configuration.

Since OSE-Electron is a retrofit of an existing compiler, cer-
tain sub-optimal decisions had to be made during its construc-
tion. For example, due to certain technical difficulties in the
way inlining is implemented, OSE is performed starting right
after the inlining phase, which means that the first round of
high-level optimization, as well as the inlining routine itself,
does not participate in OSE. Also, Electron collects only basic
block and edge profiling data. This limits the precision of our
performance estimator, as described in Section 4.1.3.

4.1.2. Defining the Exploration Space

OSE-Electron explores the optimization space defined by the
compilation parameters presented in Table 1. The values of
these parameters can be combined to form a total of 219 opti-
mization configurations. We used a tuning phase at compiler-
construction time to narrow down the space, as described in
Section 3.1.1. Out of the 3189 functions in the benchmark
suite used in Section 2.3, the compiler-construction pruning
phase used 28 functions as its training code segments.

We ran two steps of the compiler-construction pruning
method, building 
1 and 
2 = 
 for a total of 12 configu-
rations. We stopped the compiler-construction time pruning

phase after the second step, since the third step produced in-
significant benefits. These 12 configurations were organized
into a three-way, two-level configuration tree, which is pre-
sented in Figure 6.

At compile time, OSE-Electron first applies the configu-
rations appearing on the first level of the tree to each func-
tion. The resulting three different versions of the functions are
evaluated using the performance estimator described in Sec-
tion 4.1.3. After the configuration that results in the best pre-
dicted performance is chosen, its successors in the second level
of the tree are tried. The resulting versions of the code are
again evaluated, and the best version seen is emitted.

During the experiments described in Section 4.2 we ob-
served that on average 86% of the performance gains come
from exploring the three configurations on the first level of the
tree in Figure 6. Continuing the exploration to the three chil-
dren of the chosen first-level configuration accounts for the re-
maining 14% of the performance benefits on average. In some
cases, the second level of the configuration tree can account
for as much as 69% of the performance benefit. According to
our experiments, adding a third level to the configuration tree
would result in negligible performance gains.

4.1.3. Compile-time Performance Estimation

Two factors drove the design of the static performance estima-
tion routine in OSE-Electron. The first is compile time. Since
the estimation routine must be run on every version of every
function compiled, keeping it simple is critical for achieving
reasonable compile times. For this reason, the estimator cho-
sen performs a single pass through the code, foregoing more
sophisticated analysis techniques. The second limitation re-
sults from limited information. The final code produced by the
Electron compiler is annotated with basic block and edge ex-
ecution counts which are calculated in an initial profiling run
and then propagated through all optimization phases. Unfortu-
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ECI: Enable non−standard predication

uArch: Microarchitecture type − Merced(0) vs. McKinley(1)

Pred: Enable if−conversion

PS: Enable pre−scheduling
GPP: Scheduler ready criterion 

Figure 6: Tree of potential critical configurations

nately, without path profiling information many code transfor-
mations make the block and edge profiles inaccurate. Further,
more sophisticated profile information, such as branch mispre-
diction or cache miss ratios, could be useful to the estimator,
but is unavailable.

Each code segment is evaluated at compile time by taking
into account a number of performance parameters. Each pa-
rameter contributes an evaluation term. The final performance
estimate is a weighted sum of all such terms. These terms cor-
respond to the performance aspects described here.

Ideal cycle count The ideal cycle count T is a code seg-
ment’s execution time assuming perfect branch prediction and
cache behavior. It is computed by multiplying each basic
block’s schedule height with its profile weight and summing
over all basic blocks.

Data cache performance To account for varying latencies
among load instructions, a function of data cache performance,
each load instruction is assumed to have an average latency of
�. Whenever the value fetched by a load instruction is accessed
within the same basic block, the block’s schedule height (used
in the computation of T above) is computed using a distance
of at least � cycles between a load and its use.

Another term is introduced to favor code segments execut-
ing fewer dynamic load instructions. The number of load in-
structions executed according to the profile, L, provides an-
other bias toward better data cache performance.

Instruction cache performance The estimation routine is
biased against code segments and loop bodies that do not fit

into Itanium’s L1 cache. This is achieved by the formula:

I =
X

L2 loops ofS

$
size(L)

size(L1 Icache)

%
� wt(L) +

$
size(S)

size(L1 Icache)

%
� wt(S)

where S is the code segment under consideration and wt(X)
is the profile weight of X . Floor is used to model the bimodal
behavior of loops that just fit in the cache against those that are
just a bit too large.

Branch misprediction The Electron compiler does not pro-
vide us with detailed branch behavior profile information.
Therefore, OSE-Electron has to approximate branch mispre-
diction ratios by using edge profiles. For each code segment
S, the estimator assesses a branch misprediction penalty term
according to the formula:

B =
X

b 2 branches of S

min(ptaken; 1� ptaken)� wt(b)

where ptaken is the probability that the branch b is taken, as
determined by the edge profiles, andwt(b) is the profile weight
of b.

Putting it all together Given a source-code function F , let
Sc be the version of F ’s code generated by a compiler config-
uration C, and let S0 be the version of F ’s code generated by
Electron’s default configuration. Then, the evaluator estimate
for the code segment Sc is computed according to the formula:

Ec = ��
Tc

T0
+ � �

Ic

I0
+ 
 �

Lc

L0

+ Æ �
Bc

B0

where terms subscripted with C refer to the code segment Sc,
and terms subscripted with 0 refer to the code segment S0.
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Figure 7: Performance of OSE-Electron Itanium gener-
ated code, compared with the results of the experiment
in Figure 1. Speedup relative to the best standard opti-
mization heuristic configuration in Electron.

A brute-force grid searching method was used to assign val-
ues in the interval [0; 1) to the weights �; �; 
, and Æ. The same
search determined the load latency parameter �. More specif-
ically, the grid search used the same sample that was used to
define the optimization space. The grid search determined the
values of �; �; 
, Æ, and � that guide the performance estima-
tor to the best possible choices on the sample. The resulting
values are: � = 0:3, � = 0:3, 
 = 0:1, Æ = 10�5, � = 10:1.

The relatively large value of � is justified by the fact that
the chosen benchmark suite is dominated by programs like
132.ijpeg, 256.bzip2, and 124.m88ksim which scan
large data structures in memory, and hence are likely to cause
frequent cache misses.

4.1.4. Hot Code Selection

To limit compile time, OSE-Electron only performs OSE for
hot functions. Functions in the smallest set of functions com-
prising at least 90% of the execution time of a benchmark are
considered hot. The execution time of a function is determined
by monitoring performance counters during a run of the pro-
gram. We experimentally verified that this fraction yields a
good tradeoff between compile-time and performance by try-
ing a number of other thresholds.

4.2. Experimental Results

The compile-time and performance of the code generated
by the OSE-Electron compiler described in Section 4.1 are pre-
sented here. Figures 7 and 8 show these results.

For this experiment and the experiment described in Sec-
tion 2.3, we chose to present a mix of SPECint95 and
SPECint2000 benchmarks in our results instead of simply run-
ning the entire SPECint2000 suite because the compiler failed
to finish compiling the missing benchmarks for some configu-
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Figure 8: Compile time dilation for OSE-Electron over
standard Electron.

rations that involved internal variations to the optimizer. The
only exception to this is 252.eonwhich presented some tech-
nical difficulties with our evaluation software since it was a
C++ program.

In both the experiments, the SPECint95 and SPECint2000
binaries were compiled and run on an unloaded HP i2000
Itanium workstation with 1GB of RAM running Red Hat
Linux 7.1 with kernel version 2.4.17. Cycle counts were ob-
tained with Itanium’s hardware performance counters using
the pfmon tool [24]. Reported numbers are the computed av-
erage of 4 runs. For all benchmarks, the variation observed
between runs was less than 1%. Profile data for all compila-
tions was generated using the SPEC training inputs.

As we can see, the performance gains achieved with OSE-
Electron are on average less than the full potential benefit
identified in the experiment in Section 2. This is to be ex-
pected, since OSE-Electron uses performance estimation in-
stead of performance measurement, and since it searches an
optimization space which has been pruned by both compiler-
construction-time and compile-time configuration selection.
However, OSE-Electron still achieves significant benefits. In
fact, most of the performance loss is due to the estimator, not
the pruning of the tree, as can be seen by the small difference
between the exhaustive and tree based numbers in Figure 7.
Interestingly, in some cases the estimator makes better choices
than the performance measurements in Section 2. This is a re-
sult of inter-function interactions not measured in either exper-
iment, but contributing to the results. While this adds a level
of uncertainty, note that the average performance improvement
due to OSE is well above this factor. These inter-function de-
pendences also explain why the non-exhaustive OSE-Electron
can outperform an exhaustive search, since different config-
urations are used to compile some functions. Also note that
OSE is estimator-independent and that future improvements in
performance estimation will immediately increase the power
of OSE.
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Figure 8 shows the compile time dilation of OSE-Electron
using Electron as the baseline. For reference, the average
benchmark compile time for the single processor baseline con-
figuration was 261 seconds. First, notice that OSE-Electron
achieves significant compile-time reduction versus an exhaus-
tive search of the tree. Second, notice that OSE-Electron on
dual processor machines achieves a reduction in compile time
versus uniprocessor machines. This is because each compila-
tion for each level of the tree can execute in parallel, while the
traditional compiler is limited to single sequential compilation.
The traditional compiler can run on multiple files simultane-
ously, as can an OSE compiler, but additional computational
power can allow the OSE compiler to explore more configura-
tions in the same amount of time, improving final code quality.
This benefit is not available to traditional compilers.

4.3. Postmortem Code Analysis
In order to ensure that the performance benefits of the OSE

technique arise from the sources we expect, and to verify that
the performance estimator is working as designed, we examine
why some of the benefits in the experiments arise, and examine
why the estimator was able to select the correct code.

Consider the functions jpeg fdct islow and
jpeg idct islow in the 132.ijpeg SPEC95 bench-
mark. These functions compute forward and inverse
discrete-cosine transforms on image blocks. When compiled
using Electron’s default configuration for Itanium, these two
functions account for about 36% of 132.ijpeg’s execution
time. Each of these two functions contains two fixed-count
loops iterating 64 times.

Electron’s high-level optimizer, which is run before the
more machine-specific low-level optimizer in its back end,
contains a loop unrolling transformation for fixed count loops,
controlled by a heuristic. Since the code of the four loops de-
scribed above contains many data dependencies, which would
prevent efficient scheduling, the loop unrolling heuristic de-
cides to unroll each of these loops 8 times. Subsequently,
a second loop unrolling transformation in the back-end opti-
mizer unrolls each loop another 8 times.

While full unrolling seems sensible in this case, if the high-
level unrolling is turned off, 132.ijpeg sees a 23% im-
provement in performance due almost exclusively to improve-
ments in these two functions. This is because complete un-
rolling makes each function’s code bigger than the 16-kilobyte
L1 instruction cache. The result is that the completely un-
rolled version of the code spends 19% of its execution time
stalled in the instruction fetch stage, whereas the partially un-
rolled code spends only 5%. This instruction cache perfor-
mance loss overwhelms any gains due to better scheduling.
One is tempted to think that better high-level loop unrolling
heuristics could avoid this problem. However, this is unlikely,
since such heuristics would have to anticipate the usually sig-
nificant code size effect of all future optimization passes. On
the other hand, the OSE compiler uses an estimator that exam-

ines the code after unrolling and all subsequent optimizations.
The estimator can easily detect that the unrolled loops exceed
the instruction cache size, and thus avoid selecting that version
of the code.

Another case where OSE is able to achieve a large perfor-
mance benefit is the function fullGtU in the 256.bzip2
SPEC2000 benchmark. When compiled with Electron’s de-
fault configuration, this function accounts for 48% of total
running time. Our experiments show that a performance im-
provement of 76% is achieved in this function when software
pipelining is disabled.

Software pipelining is applied in order to overlap itera-
tions in a loop while yielding fewer instructions and higher
resource utilization than unrolling. During software pipelin-
ing, the loop’s 8 side exits are converted to predicated code.
The conditions for these side exits and, consequently, the con-
ditions on the new predicate define operations in the pipelined
loop depend on values loaded from memory within the same
iteration of the loop. Since the remainder of the code in the
loop is now flow dependent upon these new predicates, the
predicate defines are now on the critical path. To reduce sched-
ule height, these predicate defining instructions are scheduled
closer to the loads upon which they depend. During execu-
tion, cache misses stall the loop immediately at these predicate
define uses causing performance degradation.

The performance of this code depends heavily on the ability
of the compiler to separate these ill-behaved loads from their
uses. However, the constraints governing this separation are
difficult to anticipate until after optimization. In this case, the
predication causing the problem only occurs after the software
pipelining decision has been made. Anticipating and avoiding
this problem with a predictive heuristic would be extremely
difficult. Fortunately, the OSE compile-time performance esti-
mator can easily identify the problem, since it can examine the
load-use distance after optimization.

5. Conclusion

In this paper, we experimentally demonstrate that pre-
dictive heuristics in traditional, single-path compilation ap-
proaches sacrifice significant optimization opportunities, mo-
tivating iterative compilation. We then propose a novel itera-
tive compilation approach, called Optimization-Space Explo-
ration (OSE), which is both general and practical enough for
modern aggressively optimizing compilers targeting general-
purpose architectures.

Unlike previous iterative compilation approaches, the ap-
plicability of OSE is not limited to specific optimizations,
architectures, or application domains. This is because OSE
does not make any assumptions about the optimization rou-
tines it drives. Furthermore, OSE does not incur the prohibitive
compile-time costs of other iterative compilation approaches.

Compile time is limited in three ways. First, the search
space to be explored at compile-time is limited by leveraging
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existing compiler predictive heuristics, by aggressively limit-
ing the optimization space at compiler-construction time, and
by characterizing the behavior of the remaining search space
for further refinement at compile time. Second, instead of ex-
ecuting the code to determine code quality, a simple and fast
performance estimator is employed. Third, OSE is only ap-
plied to the frequently executed code in a program.

The potential of the OSE technique has been proved by
implementing an OSE-enabled version of an existing aggres-
sively optimizing compiler for a modern EPIC architecture.
Experimental results confirm that OSE is capable of delivering
significant performance benefits, while keeping compile times
reasonable.
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