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I. Introduction 

This paper surveys the theoretical literature on fixed-to-variable-length lossless source code trees, 
called code trees, and on variable-length-to-fixed lossless sounce code trees, called parse trees. Huffman 
coding [ l ]  is the most well known code tree problem, but there are a number of interesting variants of the 
problem formulation which lead to other combinatorial optimization problems. Huffman coding as an 
instance of combinatorial search has been highlighted in the books by Ahlswede and Wegener [2] and 
Aigner [3]. See also the papers of Hinderer and Stieglitz [4] and Hassin and Henig [5] for overviews of 
the combinatorial search literature. Tunstall parsing [6] is the most well known parse tree problem for a 
probability-based source model, although parsing based directly on source data is very familiar as 
Lempel Ziv parsing [7-81, a family of techniques which is outside the scope of this survey. Similarly, 
adaptive, data-based variants of Huffman coding, e.g. [9-1:2] will not be treated here. Rather, the 
assumption here is that the source model is given as a sequence of independent and identically distributed 
(iid) random variables for some known discrete distribution, although on occasion it is possible that only 
partial information about the source is available. These lossless source encoding techniques comprise a 
subset of data compression techniques, and broader surveys of the data compression literature are 
available [ 13-21]. 

In particular, the following code tree topics are outlined in this survey: characteristics of the 
Huffman code tree; Huffman-type coding for infinite source alphabets and universal coding; the Huffman 
problem subject to a lexicographic constraint, or, that is, the I-Iu-Tucker problem; the Huffman problem 
subject to maximum codeword length constraints; code trees; which minimize other functions besides 
average codeword length; coding for unequal cost code symbolls, or, that is, the Karp problem, and finite 
state channels; and variants of Huffman coding in which the assignment of 0's and 1's within codewords 
is significant such as bidirectionality and synchronization. The literature on parse tree topics is less 
extensive. Treated here are: variants of Tunstall parsing; dualities between parsing and coding; dual tree 
coding in which parsing and coding are combined to yield variable-length-to-variable-length codes; and 
parsing and random number generation. Finally, questions related to counting and representing code and 
parse trees are also discussed. 

11. Code Trees 

In fixed-to-variable-length binary source coding, a code tree is used to associate a string of binary 
code symbols with each of a set of K source symbols. A code tree is a complete binary tree with K leaf 
nodes and K-1 internal nodes including the root at the top of the tree. Pairs of branches descend from 
each internal node. Left branches are labeled with the code symbol 0 and right branches are labeled with 
the code symbol 1. Each leaf node is labeled with one of the I< source symbols. A path through the code 
tree from the root to a leaf describes the string of code symbols associated with the source symbol at the 
leaf. The problem is to find a code tree to optimize some performance criterion, possibly under the 
imposition of constraints on the form of the tree. For r-ary source coding, when ~ 2 ,  each internal node of 
the tree can have anywhere between 2 and r branches descending from it, and this flexibility introduces 
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some additional complexity to the r-ary code tree problem. Nevertheless, much of the literature 
concentrates on binary code trees with the r-ary generalization straightforward. 

11.1. Huffman Code Trees 

Huffman coding [ l ]  can be found described in all information theory textbooks [22-251, as well as 
in many computer science [26-301 and discrete mathematics texts [3 1-32]. Huffman’s algorithm solves 
the quintessential problem of finding the code tree to minimize average codeword length. For source 
symbols occurring with probabilities P={p(i), i=l, ..., K} we wish to find path lengths through the tree 
L={l(i), i=l, . . .,K} to solve minJlsIsKp(i)l(i). There are no further constraints on the problem; however, 
it is known from the Kraft inequality that for a set of codeword lengths L to be compatible with a binary 
code tree it is necessary and sufficient that Z2% hold. Because the resulting minimum average 
codeword length 1* can be bounded in terms of entropy H=-Cp(i)logzp(i) according to H<l*<H+I with 
I*=H if and only if P is a dyadic distribution, that is p(i)= 2-l“) for some integer l(i), minimum 
redundancy, or I*-H, is bounded according to 011*-H<l. An equivalent perspective on Huffman coding is 
that it minimizes redundancy over L because H is a constant with respect to the minimization. Another 
equivalent perspective on Huffman coding is that the dyadic distribution induced by the code tree 
Q={q(i)=2-“”, i=l, ..., K} is the dyadic distribution closest to P in the minimum discrimination sense. That 
is to say, Huffman coding solves minJp(i)logz p(i)/q(i). 

Huffman’s algorithm is a bottom up merge type algorithm in which, at each stage of the process, the 
two least probable source symbols are “merged” into a pair of sibling nodes whose new parent node has 
probability given by the sum of the two original probabilities. These combined nodes are treated as a 
single node in each subsequent stage of the algorithm. Note that the code tree generated by the Huffman 
algorithm is not unique, and that there are code trees which share the same set of codeword lengths as a 
Huffman code but which cannot be obtained from the Huffman algorithm. These distinctions will not be 
important here. 

11.2. Characterizations of Huffman Code Trees 

A number of authors have addressed the problem of characterizing the form of the resulting 
Huffman code tree given partial or full information about the source probabilities. These are results about 
the form of the Huffman code tree which are known without actually constructing the code. Katona and 
Nemetz [33] upper bound the length of the codeword associated with a source symbol of probability p(i) 
based on the extrema1 properties of the Huffman code tree for a particular source distribution involving 
ratios of Fibonacci numbers. They are motivated to discover a relationship between the self-information 
of the source symbol, -logzp(i), and its codeword length, l(i), in view of the entropy bounds on average 
codeword length. Other work on individual Huffman codeword lengths has also appeared [34-4 11. 
Schack [42] continues Katona and Nemetz’s line of inquiry by bounding the probability of source 
symbols whose self-information and codeword lengths are far from each other. Cheng et al. [43] make 
use of Schack‘s machinery in their work on bounding the temporary expansion possible when Huffman 
coding is used in lieu of block coding and low probability source symbols precede high probability 
source symbols in encoding a sequence of source symbols. De Prisco and De Santis [44] further address 
the data expansion problem by making use of the literature on redundancy bounds for given partial 
information about the source probabilities. 

When the given source symbol is known to be the most likely symbol, with probability, say, p( 1), its 
codeword length can be specified to within 1 [34-35, 451. Results of this type have typically been 
employed to bound the redundancy of the Huffman code in terms of known p(1) more tightly than to 
within [H, H+l). The most comprehensive paper on redundancy bounds is Manstetten’s [46]. The 
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problem of redundancy bounds originated with Gallager [9], and a number of other authors contributed to 
this problem [47-531 including the problem variant in which the least likely probability, p(K), is known. 
A useful general approach to establishing redundancy bounds given a subset of the ordered source 
probabilities is Yeung’s [54] redundancy theorem, and several of the redundancy bounds are special 
cases of his result. 

Golomb [55] considers finite source distributions for wlhich multiple distinct code trees share a 
common minimum average codeword length. 

Gegkinli [56] gives necessary and sufficient condition,s on the source probabilities P for the 
difference between the longest and shortest codeword lengths to be 0 or 1. Katona and Lee 1341 give a 
sufficient condition such that the difference is less than or equal to a given integer. In a sense, Geqkinli 
addresses the question of, when is the short, fat tree optimal? In contrast, Katona and Nemetz’s [33] work 
can be interpreted as addressing the question of when is the long, thin tree (with codeword lengths 
{ l(i)=i, i=l, ..., K-1; l(K)=l(K-l)})optimal? Vinokur [57] addressed this question independently as well. 

Some authors are concerned with the balance properties of Huffman trees, that is, with the relative 
size of the weights associated with the internal nodes of the tree [58-601. 

For some parametric families of source distributions, the form of the resulting Huffman code tree is 
known explicitly. The binomial distribution arises in encoding fixed length blocks of binary source 
symbols from an independent and identically distributed sequence of biased coin tosses. Jakobsson [61] 
gives the Huffman code in explicit form for binomial parameters satisfying certain conditions. Stubley 
[62] considers the binomially distributed source for all parameter values and analyzes the redundancy of 
the Huffman code in this case obtaining redundancy bounds. Stubley [63] also examines the multinomial 
distribution arising from fixed length blocks of r-ary source symbols. Other authors who have examined 
binomial sources have been interested in questions about the behavior of the resulting average codeword 
length as a function of block size, and in particular about its nonmonotonicity with increasing block size. 
See [45,64-661. 

Similar questions related to Huffman coding variable length strings rather than fixed length blocks 
can be thought of as arising within the framework of variable-to-variable-length or dual tree coding, 
treated in a later section. 

Another distribution which has been studied in connection with Huffman coding is the finite 
geometric distribution. Huffman coding for this distribution arises in the context of group testing, a 
combinatorial search problem in which the goal is to fully classify all members of a set into one of two 
classes based on a series of tests, each of which can determinle whether or not the subset submitted to it 
consists entirely of members of one of the classes. Hwang [67] finds the average codeword length for this 
distribution without explicitly identifying the codeword lengths. The codeword lengths are given 
explicitly for some parameter values only in [68]. Other work on this problem appears in [4,69]. 

There are also a few other parametric families of finite source distributions for which Huffman 
codes are available. The uniform distribution always leads to a short, fat Huffman tree as in GeGkinli 
[56]. Giinther and Schneider [70] and Campbell [71] discuss the “typical” source of K symbols and 
compare its entropy to that of the uniform source. The difference is quite small for large K suggesting 
that, for large, typical sources, the short, fat tree is nearly optiimal. And of course the Huffman code trees 
for dyadic distributions are immediate by inspection. These Huffman codes have zero redundancy and the 
interesting property that Os and 1’s occur with equal probability on average in the string of code symbols, 
a property which does not hold in general 1721. The finite zeta-function distribution in which p(i) is 
proportional to l/i is studied by Gutman [73] who shows that for certain finite source alphabet sizes the 
Huffman code tree can be found explicitly for this distribution. Tucker [74] examines probabilities 
proportional to i, i=1, ..., K. Hwang [75] considers the case that the probabilities take on either of only two 
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values. A distribution of particular form arising in a data structure application is explicitly Huffman 
coded in [76]. There are also a number of infinite source distributions for which explicit minimum 
average length codes are known, and these will be treated in the next section. 

Gallager’s sibling property [9] states that a code tree is a Huffman tree if and only if the nodes of 
the tree can be listed in order of nonincreasing probability with each node being adjacent in the list to its 
sibling. This property can be used to verify whether or not a given tree is the Huffman tree for a fixed 
distribution. 

Longo and Galasso [77] employ the minimum discrimination perspective for Huffman coding and 
find conditions on source probability distributions such that they share the same Huffman code as a 
particular dyadic distribution. See also [78]. Discrimination arises also in the problem of evaluating the 
mismatch when a source with one set of probabilities is mistakenly encoded assuming a different set of 
probabilities [79-811. It may be of interest to examine mismatch problems in other coding and parsing 
contexts as well. 

Hu and Tucker [82] and Hwang [83] consider the question of computing the average codeword 
lengths of Huffman codes for different source probability distributions without actually constructing the 
codes. They give inequalities on functionals of the source probabilities sufficient for inequalities on the 
Huffman average codeword lengths. Their approaches are related to the notion of majorization in the 
theory of inequalities. 

Hwang’s [83] paper is interesting in another respect. He deals with Huffman code trees more 
general than r-ary. The number of branches descending from each intemal node is a fixed integer varying 
from node to node. See also Chu and Gill [84] for trees with variable intemal node degrees for the 
Huffman problem. Both Hwang and Chu and Gill also address the Hu-Tucker problem discussed later. 

11.3. Infinite Source Alphabets and Universal Coding 

Since the Huffman algorithm is bottom up, beginning with the merge of the two least likely source 
symbols, infinite source alphabets are not immediately amenable to Huffman coding. However, Gallager 
and Van Voorhis [85] were able to make use of the Huffman code for a finite distribution obtained from 
the infinite distribution together with a limiting argument and obtain the minimum average codeword 
length code for the infinite geometric distribution. Their work extends the earlier work of Golomb [86] 
on this problem. Note that the geometric distribution arises in describing the run lengths generated by a 
sequence of underlying iid binary random variables. Similar methods have been applied to other 
parametric families of infinite source distributions or to establishing sufficient conditions on the source 
probabilities for a particular structured infinite tree to be optimal for that distribution [87-901. Linder et 
al. [91] prove that this general approach will find the optimal code whenever the source entropy is finite, 
however it is not truly a constructive method. Kat0 [92] has recently extended the proof to infinite 
entropy distributions. Several authors, for example [93-981, use the codeword sets of Golomb and 
Gallager and Van Voorhis or a modification of these sets for other infinite source distributions besides 
geometric, not necessarily in an optimal fashion. 

Gallager and Van Voorhis’s infinite code trees, parameterized by an integer which depends on the 
parameter of the geometric distribution, are not universal in the sense of Elias [99]. Universal codes for 
infinite alphabets have the property that when the shortest codewords are used to represent the most 
likely source symbols, the resulting average codeword length is upper bounded by a constant multiple of 
the source entropy for all infinite source distributions. 

A number of authors discuss infinite code trees in the context of universal codes including [loo- 
11 1 ]. Many of the universal code trees discussed in the literature fall into a common framework as 
described in [18, Sect. 3.31 based on systems of numeration 11121. Some specific examples of universal 
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codes based on numeration systems are identified in [ 113-1 151 and independently in [ 1161. The general 
idea is that each positive integer x is assigned a binary codeword composed of two components 
consistent with the existence of a binary code tree. An infinite sequence V={Vi, i=1,2,. . .} is specified 
and x is represented relative to V by the pair u s )  where C~~ijvi<x<l;l~ij+~vi and r=x-&yvi-l. The 
concatenation of a string of j bits for j and a string of hog vjl bits for r makes up the codeword. Of course 
nonuniversal infinite alphabet code trees can also be interpreted in terms of the two components of a 
numeration system, particularly when the convention for the representation of r is loosened to include 
other variable length strings. There are a variety of other approaches to universal coding which do not 
fall into the infinite code tree perspective and are not discussed here. 

11.4. Lexicographic Constraints on the Huffman Coding Problem: 
The Hu-Tucker Problem 

Suppose that the source symbols to be encoded must be assigned to the leaves of the code tree in a 
fixed left-to-right order. Equivalently the binary codewords must exhibit a particular lexicographic order. 
It may happen for a particular set of source probabilities and a particular linear order constraint on the 
corresponding symbols that the Huffman code tree (or a tree with the same average codeword length in 
the case that the minimum average codeword length tree is not unique) exhibits the desired linear order. 
This is the case, for example, if the source symbols are linearly ordered according to a monotonically 
increasing or decreasing order on their probabilities. But, in general, the Huffman code tree does not 
exhibit the desired linear order, and the code tree which minimizes average codeword length subject to a 
linear order constraint on the source symbols has a resulting average codeword length greater than the 
Huffman minimum. Such alphabetic or lexicographic or linearly ordered code trees can be obtained using 
the algorithm of Hu and Tucker [ 117-1211, and their average codeword lengths fall within [H, H+2). The 
original work on alphabetic codes goes back to Gilbert and Molore [ 1221. 

The Hu-Tucker algorithm has as its central step a merge operation like the Huffman merge but 
restricted to pairs of symbols which are adjacent in the linear order in a certain generalized sense. 
Repeated application of this merge operation yields a tree which is then able to be rearranged into a tree 
with the same set of codeword lengths which also satisfies tlhe linear order constraint. It is a difficult 
algorithm to understand in contrast with the straightforwardness of the Huffman algorithm. 

Several authors have proved a version of the Kraft inequality for Hu-Tucker code trees, that is, have 
characterized the set of codeword lengths consistent with the existence of a lexicographically constrained 
tree [123-1261. With this result in hand, a number of results refining the [0,2) Hu-Tucker code 
redundancy bound given partial information about the source probabilities and their linear order have 
been obtained, along with bounds on the Hu-Tucker average codeword length given in terms of the 
Huffman average codeword length for the same (unordered) probabilities [ 123-1261. Kleitman and Saks’s 
[ 1271 result, that the worst case ordering of source probabilities for the Hu-Tucker problem is the 
“sawtooth order” also serves to upper bound the Hu-Tucker average codeword length. Hu and Tan [ 1281 
take this kind of approach to performance bounds in a more general ordered search tree context which 
includes the Hu-Tucker problem as a special case. 

One other set of results characterizing the form of the Hu-Tucker code tree is due to Ramanan [ 1291 
who gives inequalities on the source probabilities sufficient for a particular Hu-Tucker tree to be optimal. 
Ramanan’s motivation is in finding means to test whether a g,iven tree is the Hu-Tucker tree for a fixed 
set of source probabilities in a way which is computationally less complex than the construction of the 
optimal tree itself. This may be a potentially promising perspective to take, as well, towards other 
constrained coding problems, to be described later in this survey, for which the optimal code tree is 
difficult to find algorithmically. 
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A stricter set of constraints on the Huffman problem than the linear order of Hu and Tucker is Van 
Voorhis’s [ 1301 problem in which the codewords must in addition satisfy a monotonic length constraint. 
As expected, the resulting minimum average codeword length code obtained from Van Voorhis’s 
algorithm has an average codeword length which can be upper bounded in terms of the Hu-Tucker 
codeword length [ 13 11. 

One combinatorial search problem besides the minimum average codeword length coding problem 
in which Huffman and Hu-Tucker code trees arise is the problem of testing for a single distinguished 
item on the basis of a series of tests each of which can identify whether the distinguished item is in a 
given subset of items presented to the test or not. We are given prior probabilities on each item as to how 
likely it is to be the distinguished item. If the items are components of some system arranged in a fixed 
left-to-right order such as in an “oil pipeline”, and the tests identify whether or not the distinguished or 
“faulty” component is to the left of the tested point, the test tree which minimizes the average number of 
tests to identify the distinguished component is the Hu-Tucker tree. The problem variant in which the 
components are arranged according to a fully-connected, partially-ordered structure with a single final 
element in the partial order has been examined [132] but not fully resolved. It would be of interest to 
have a generalization of the Hu-Tucker algorithm which applied to a partial-order constraint of this form 
on the source symbols. Similarly one can imagine imposing partial orders of other forms on the source 
symbols in a minimum average codeword length coding problem, for example, consider a set of several 
disjoint linear orders, representing a source alphabet of letters, numbers, and punctuation marks, and an 
algorithm and bounds on the resulting codeword length would be of interest in this case as well. For 
constrained trees in these and other search problems, the appropriate Kraft-type inequality would be of 
interest although in most cases it is not available. 

For a parallel search of linearly ordered items, or for a parallel version of the unordered Huffman 
problem, an optimal forest is found by stopping the Hu-Tucker or Huffman merge algorithms after K-m 
merge steps [ 1171. Then each of the m trees in the forest can be searched simultaneously, and the average 
time for any of the searchers to find the single distinguished time is minimized. Entropy bounds on the 
resulting minimum average path lengths are given in [ 1331 for these problems. 

Another potentially interesting variant of the Hu-Tucker problem may be the “parallel product” 
problem described in [4]. Imagine tests of the Hu-Tucker type used to identify a single distinguished 
item, however each item is characterized by D>1 attributes, each one of which can only be tested 
separately. For example, the single distinguished item may be thought of as faulty, but to be faulty it must 
be defective in all of D dependent but separately testable modes. We are given the prior probability that 
the item for which attribute d takes on the value i(d), i(d)=l,. . ., K(d), d=l,. . .,D, is the distinguished 
item. Thus each node in the code or test tree distinguishes between the subset of the items for which i(d) 
is less than some value and its complement. In essence this problem introduces probabilities into the 
standard multidimensional search problem in which the attributes are tested cyclically, d=l, ..., D, in each 
level of the tree. A Huffman “parallel product” problem or one which is Huffman in some attributes and 
Hu-Tucker in the others might also be interesting. 

In any of these Huffman problem variants with order constraints, the average codeword length 
obtained from the Huffman algorithm applied to the unconstrained probabilities is always a lower bound 
on the constrained minimum average codeword length. If the Huffman tree satisfies the constraints of the 
problem, or if it can be rearranged into a tree with the same codeword lengths which satisfies the 
constraints of the problem, then that tree solves the constrained problem. The characterization of 
constraint “profiles” for which the unconstrained, Huffman, algorithm applies may be useful. 

Note that the nonbinary Hu-Tucker problem remains essentially open [ 1341. 
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11.5. Maximum Codeword Length Constraints on Huffrnan and Hu-Tucker Coding 

Both the Huffman and Hu-Tucker problems have been addressed under the additional constraint that 
no codeword be longer than a certain maximum value. Clearly, as that permitted maximum value 
increases, eventually the unconstrained Huffman or Hu-Tucker tree results. Also, in general, the 
imposition of the maximum codeword length constraint will lead to larger resulting average codeword 
lengths than in the unconstrained Huffman and Hu-Tucker probllems. 

Currently the best algorithmic approach to Huffman coding under the maximum codeword length 
constraint is due to Moffat et al. [I351371 based on the algorithm of Larmore and Hirschberg [138]. 
However, a number of earlier approaches to the same problem have appeared [139-1461. And see [147] 
for a Hu-Tucker coding algorithm under the maximum codeword length constraint. 

Some performance analysis results are available for maximum codeword length constrained coding 
problems, notably Capocelli and De Santis’s [ 1481 redundancy bounds for the length constrained 
Huffman problem, including the case of p(1) or p(K) given. Tie  corresponding questions for the length 
constrained Hu-Tucker problem have not been addressed. The worst case ordering of source probabilities 
for the length constrained Hu-Tucker problem remains the “sawtooth order” as in the unconstrained 
problem [149]. 

The work of Anily and Hassin [ 1501 is relevant to constraints such as maximum length constraints 
or other constrained problems which one might propose, such iaS maximum constraints on the difference 
between longest and shortest codeword lengths, or fringe, for example. They compute the best, second 
best,. . .,sth-best trees in terms of minimum average codeword length for fixed source probabilities from 
which the best tree satisfying the constraints can be identified by examining each candidate tree in turn. 
They deal with both the Huffman and Hu-Tucker versions of this problem. Entropy bounds on the 
average codeword length of the sth-best tree are not available and may be of interest to obtain. 

11.6. Minimizing Other Codeword Length Functionals 

Both the Huffman and Hu-Tucker problems have been adldressed under the variant that a functional 
of codeword length other than average codeword length is to be minimized. Of particular interest are 
cases in which a merge type algorithm like Huffman or Hu-Tucker serves to construct the optimal tree. 
Parker [I511 has unified a large earlier literature on generalized Huffman problems into a common 
comprehensive framework. In particular, Parker works with a class of a “quasilinear” merge functions, 
F(x,y), whose arguments are the probabilities weighting the nodes to be merged. Then F(x,y) will be the 
weight of the newly created parent node. In the ordinary Huffman algorithm, F,(x,y)=x+y. Another 
example of merge function which is included in Parker’s framework is F,(x,y)=max(x,y)+c. Then 
Parker’s generalized merge algorithm creates a tree by merging, at each stage of the process, the two least 
probable source symbols, with probabilities x and y, into a pair of sibling nodes whose new parent node 
has probability, or weight, given by F(x,y). If G is a “Schur concave” cost functional of the weights on 
the interior nodes of the tree, then the generalized merge algorithm forms a tree for which G is 
minimized. In the ordinary Huffman algorithm, G,=sum, and the resulting tree which minimizes the sum 
of the weights of the interior nodes of the tree is exactly the: tree which minimizes average codeword 
length Cp( i)l( i) . 

Another example of cost functional which is included in Parker’s framework is G,,,=max, and the 
tree resulting from the generalized merge algorithm incorporating F, which minimizes the maximum of 
the weights of the interior nodes of the tree is exactly the tree which minimizes max (p(i)+cl(i)). 
Generalized entropy-type bounds on the resulting minimum codeword length functional are included in 
[151]. See also [152] for p(1) given. Among the special cases included in Parker’s framework are those 
addressed in [153-1551 and see the references in [151]. Knuth [156] revisited Parker’s problem from an 
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elegant abstract perspective which also incorporates Huffman problems with secondary optimality 
criteria such as, of all Huffman trees for given source probabilities, select the one with minimum sum of 
codeword lengths, a problem originated by Schwartz [ 1571, or minimum variance, a problem originated 
by Kou [158]. See [I591 for more on the Schwartz and Kou problems. Markowsky [160] also examines 
Huffman problems with secondary optimality criteria. Chang and Thomas [ 1611 further examined 
Knuth’s algebraic perspective on code trees, particularly in the case that random variables are substituted 
for the source probabilities. 

The generalized merge version of the Hu-Tucker problem was addressed by Hu, Kleitman, and 
Tamaki [ 1341 who work with a class of merge functions and cost functionals satisfying a set of specified 
properties. It is not immediately clear exactly what is the correspondence between the class of F,G pairs 
for which Parker’s generalized Huffman algorithm holds and the class of F,G pairs for which Hu, 
Kleitman, and Tamaki’s generalized Hu-Tucker algorithm holds. It may be a useful contribution to align 
these two apparently independent generalized merge formalisms. It may also be of interest to obtain 
generalized entropy-type bounds on the minimum codeword length functional for alphabetic codes in the 
context of the Hu, Kleitman and Tamaki algorithm. Zhang [162] proves that a generalized merge Hu- 
Tucker type algorithm finds the optimal tree for a particular F,G pair, F, for c=l and G,, which is 
claimed to be outside the original class of F and G treated by Hu, Kleitman, and Tamaki. Kirkpatrick and 
Klawe [163] carry out the details of the F,, G, problem for c=l for alphabetic codes in the nonbinary 
case thus addressing in part an issue raised in [134]. They also provide a generalized entropy-type upper 
bound for this F,G pair. 

Occasionally the Huffman problem is considered under some other optimization criterion variant 
besides those in Parker and Knuth for which a generalized merge algorithm finds the optimal code tree. 
One such problem is to find Cover’s [ l a ]  competitively optimal code tree. The Huffman tree finds L 
such that Xp(i)(l(i)-l’(i))<O for all L‘. Cover asks for the tree such that Xp(i)sgn(l(i)-l’(i))<O. Feder [ 1651 
and Yamamoto and Itoh [166] also examine competitive optimality, and Yamamoto and Itoh show that if 
the competitively optimal code exists for given source probabilities then it is also the Huffman code tree, 
and they provide conditions on P for its existence. Perhaps it may be of interest to consider the tree such 
that Xp(i)f(l(i)-l’(i))<O for some general class of nonlinear functions f. 

Larmore [167] is interested in minimizing a particular nonlinear function of average codeword 
length and codeword variance which arises in modeling delay in communicating coded strings. He 
resolves the Huffman version of his problem but leaves the Hu-Tucker version open. One can imagine a 
broader class of nonlinear functions of average codeword length and other codeword length functionals 
being of interest as performance criteria as well. It would be of interest to determine how broadly 
Larmore’s method applies. Since the approach consists of two stages, one which minimizes all linear 
combinations of average codeword length and codeword variance, and one which searches over all 
candidate trees within a constrained set determined by the result of the first stage together with the form 
of the particular nonlinear function in the problem formulation, it seems reasonable to expect that the 
general approach is more widely applicable. Nevertheless the algorithm itself is not as elegant as the 
merge-based Huffman algorithm. 

Cohen and Fredman [168] address the minimization of a performance criterion which arises when m 
independent processors use a single test tree in parallel. Each is to identify its own distinguished item 
from among the K items. In particular, m items are selected independently according to P. Assuming each 
processor’s search must be completed before the next phase of the computation begins, the cost to be 
minimized is the average length of the maximum of the m path lengths through the tree. For m=l, this is 
the ordinary Huffman problem or the ordinary Hu-Tucker problem if an alphabetic constraint is imposed. 
The approach of their suboptimal algorithm is to derive a set of transformed probabilities to which the 
m=l Huffman algorithm is applied. Clearly it would be of interest to resolve this intriguing problem 
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optimally. Similarly one can introduce other search problems biased on Cohen and Fredman’s scenario of 
m independent processors, and these may also be of interest. 

11.7. Coding with Unequal Cost Code Symbols: The Karp Problem 

In the binary unequal costs coding problem, using the code symbol 0 costs c(0)Tl and using the 
code symbol 1 costs c(1)Tl. Thus a path through the code tree which consists of M(i) left branches and 
N(i) right branches, or, that is, a codeword consisting of M(i) Os and N(i) l’s, costs 
I(i)=c(O)M(i)+c( l)N(i). When c(O)=c(l)=l, l(i) is codeword langth in the usual sense. Karp [169] first 
gave an algorithm to find the optimal code tree in the sense of nninimum average codeword cost, that is to 
solve minL Zlj, Kp(i)l(i), and this problem will be referred to as the Karp problem. Actually, Karp 
addressed the case of r-ary code alphabets and distinguished lbetween exhaustive codes, in which each 
interior node of the tree has exactly r descendants, and nonexhaustive codes, in which each interior node 
has at least 2 and no more than r descendants. Generally in unequal costs coding problems, the 
algorithms to find optimal exhaustive codes are simpler but the nonexhaustive codes yield lower average 
cost. For binary code alphabets the distinction does not adse. For c(O)=c(l)=l, Karp’s problem is 
Huffman coding. 

Karp’s method is an integer programming method which makes use of a useful structure function 
method for representing code trees algebraically. Golin and Rote [ 1701 provide a dynamic programming 
algorithm to solve the Karp problem which is much mom computationally efficient than Karp’s 
approach. Both Karp and Golin and Rote address the unordered or Huffman version of the unequal costs 
coding problem. See Itai [ 1461 for the ordered or Hu-Tucker version. 

Entropy bounds for the Karp problem are given by KJause [171]. See also [172]. The Kraft 
inequality for unequal costs on which the bounds are based is found in [169]. See also [173]. Recently De 
Prisco and Persian0 [ 1741 extended the Kraft-inequality-like results of [ 1231 for the Hu-Tucker problem 
to the ordered Karp problem. 

A number of authors have dealt with techniques for finding good but not optimal unequal costs 
codes for arbitrary source probabilities [175-1771 or have developed techniques to find optimal codes for 
uniform source probabilities and special cost structures [ 178-18 11. 

Optimal codes for uniform source probabilities and arbitrary cost structures is a problem of interest 
for which a substantial body of results are known. Varn [182] first provided algorithms to find the 
optimal exhaustive and nonexhaustive code trees in the minimum average codeword cost sense. Perl, 
Garey, and Even [ 1831 introduced a nonexhaustive algorithm which is computationally better than Varn’s 
and provided a simpler algorithm to find the optimal nonexhaustive code tree in the minimax codeword 
cost sense. In the exhaustive case the same code trees are opl.ima1 according to both minimum average 
and minimax cost performance criteria [184]. Other nonexhaustive algorithms are in [185-1861. Choi and 
Golin’s [187] recent algorithm for the nonexhaustive Varn problem is the best computationally. Savari 
[188] provides performance bounds on the resulting average codeword cost of Varn codes. See also [189] 
for the binary case. 

Vam’s algorithm for exhaustive code trees is a top dowin splitting algorithm in which a least cost 
node is replaced by two descendant nodes at each stage. The costs of the descendants are the cost of the 
parent plus the cost of the associated branch. The sequence of Varn code trees has an underlying 
Fibonacci tree structure first identified by Horibe [190] in tlie case that c(O)=l and c(l)=2 and since 
generalized for arbitrary integer costs [ 191-1921. A similar generalized Fibonacci structure is present in 
the sequence of nonexhaustive minimax Varn trees [ 1931. Hinlderer [ 1941 also addresses the binary Varn 
problem independently. 
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Horibe has written a number of papers on the properties, particularly the balance properties, of the 
Fibonacci trees arising in the solution to the Varn problem [ 195-1981. One property of particular interest 
is the fact that the generalized Fibonacci tree which solves the Varn problem for arbitrary costs both 
minimizes average codeword cost and maximizes the entropy of the probability distribution induced by 
the tree [199]. The induced distribution is of the form P={p(i)=$"), i=l,. . .,K} where tc(o)+tc(')=l. The idea 
of induced distribution will reappear in the following in the discussion of parse trees. 

Besides uniform sources, Karp's problem is also easily solved for distributions whose relationship 
to the code symbol costs generalizes the relationship between dyadic sources and binary equal code 
symbol costs [200]. These distributions can be coded with zero redundancy. 

Consider now the generalized unequal costs coding problem in which the costs of the code symbols 
vary with the position of the code symbol in the codeword. This model of Code symbol costs is 
Shannon's original discrete noiseless channel model in which a finite state diagram describes the cost of 
each code symbol when it appears following some particular string of code symbols in the codeword 
[201]. Finite state channel models arise frequently in the literature on magnetic -and optical recording 
[202], however this literature is not typically concerned with either variable-length-to-block codes or 
with minimum average cost as a performance criterion. Csiszar [203] proposed a nonoptimal approach to 
variable length coding for finite state code symbol costs and provided entropy-type performance bounds. 
The particular case of costs which grow rapidly with the position of the code symbol in the codeword 
was addressed in [204-2051, and bounds of Csisztir's form are shown not to hold. It would be of interest 
to derive algorithms for minimum average codeword cost codes for finite state cost models, for both 
arbitrary source probabilities and for the special case of uniform source probabilities. Recently the author 
[206] was able to show that a Varn-like algorithm applies to certain finite state cost models for uniform 
source probabilities. In essence c(O)+c( 1) must be nearly constant at every interior node of the code tree 
for the Varn-like algorithm to apply. Recall that for Varn codes, c(0) and c( 1) are fixed at every interior 
node of the code tree. 

11.8. Coding for Bidirectionality and Synchronization 

In some coding applications it is of interest to select the assignment of patterns of 0's and 1's within 
the codewords in order to obtain good performance with respect to some secondary pattern-based 
criterion. Ideally the minimum average codeword length property of the underlying code tree is not 
affected by the choice among codewords with the specified codeword lengths but sometimes average 
codeword length is sacrificed in order to gain improved performance with respect to the secondary 
criterion. 

Bidirectionality is one such secondary criterion. Several authors have considered this problem 
independently [207-2101. If the set of codewords also has the property that when read backwards the 
codewords form a code tree, then the code is bidirectional. Questions of interest include characterizing 
the sets of codeword lengths which are consistent with bidirectionality, finding codeword string 
assignments with the bidirectionality property when they exist, bounding the increase in average 
codeword length required to ensure bidirectionality when the Huffman codeword lengths are inconsistent 
with bidirectionality. Synchronization is another such secondary criterion. 

A number of authors [211-2171 have examined conditions on the set of codeword lengths sufficient 
for the existence of one or more synchronizing codewords, a codeword whose pattern of code symbols, 
relative to the other codewords in the code, is such that the next received symbol is always correctly 
interpreted as the beginning of a new codeword, whether or not the synchronizing codeword was itself 
correctly received and/or decoded. Other authors [218-2191 require the synchronizing codeword to have 
the stronger property that it is itself always correctly decoded when correctly received. In each case there 
is interest in constructing the codeword set and in evaluating both its synchronizing performance and its 
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loss of average codeword length relative to the Huffman code if that loss occurs. 

An alternative perspective on synchronization is to design ia set of variable length codes for a given 
source alphabet size with good overall synchronization properties and then to select the best code from 
within that set, best in the sense of minimum average codeword length for the source distribution. This is 
the approach taken by Titchener [220-2221 and Higgie [223-2251 and further examined by Swaszek and 
Willett [226] under the name of "T-codes". Unfortunately a good analytical evaluation of the tradeoff 
between synchronization performance and average codeword length for T-codes is not available, nor is 
there an algorithm other than exhaustive search for the identification of the best T-code in some 
combined synchronizationlaverage-codeword-length sense. 

Several authors have addressed the issue of synchronization recovery in variable-length codes 
beginning with Maxted and Robinson [227]. See Swaszek and DiCicco [228] and the references therein. 

Another application in which the pattems of code symbols; within the codewords matter is in using 
Huffman codes cryptographically [229]. One of the issues here is to identify conditions on the Huffman 
codeword lengths such that different strings of source symbols lead to an identical string of code symbols 
when the assignment- of code symbols within the codewords differs. This kind of ambiguity is of 
cryptographic significance. 

111. Parse Trees 

In variable-length-to-fixed binary source coding, a parse tree is used to associate a string of binary 
source symbols with each of a set of K code symbols. A parse tree is a complete binary tree with K leaf 
nodes and K-1 internal nodes including the root at the top of the tree. Pairs of branches descend from 
each internal node. Left branches are labeled with the source symbol 0 and right branches are labeled 
with the source symbol 1. Each leaf node is labeled with one of the K code symbols. A path through the 
parse tree from the root to a leaf describes the string of source symbols associated with the code symbol 
at the leaf. The problem is to find a parse tree to optimize some: performance criterion, possibly under the 
imposition of constraints on the form of the tree, when the source symbol is 0 with probability ro and 1 
with probability rl. Thus a path through the parse tree which consists of M(i) left branches and N(i) right 
branches, or, that is, a parse string consisting of M(i) 0's and N(i) l's, corresponds to a string of source 
symbols which occurs with probability R={r(i)=ro'(') rlN('), i=l,. . .,K). Refer to such an R as the 
probability distribution induced by the parse tree. 

III.1.Tunstall Parse Trees and Variants 

Tunstall parsing [6, 2301, also derived independently b'y Verhoeff [231], solves the problem of 
finding the parse tree to maximize average parse string length, or, that is, to solve 
maXM.NEt i)(M( i)+N(i)) for M= { M( i) , i= 1,. . . ,K 1, N= { N(i), i= 1,. . . ,K ) . Here 1( i)=M(i)+N( i) is the 
length of the i" parse string, and it arises with probability r(i). There are no further constraints on the 
problem however C2'"kl must hold in order that the binary parse tree exists, from the Kraft inequality. 
Another way of thinking about Tunstall parsing is that it find!; the parse tree whose induced distribution 
R has maximum entropy, or, that is, it solves max~-Cr(i)log2r(i). This follows from the fact that [230] HI 
(R) = EL HD(r), where H1(R)=-Er(i)log2r(i) is the entropy off the distribution induced by a parse tree, 
H~(r)=-rolog2ro-rllog2r~ is the entropy of the source distribution, and EL is the expected parse string 
length of that parse tree. 

A minimum discrimination perspective on Tunstall parsing is due to Stubley and Blake [232] who 
examined a broader class of parsing problems. In their framework, the distribution induced by the parse 
tree, R, is the closest induced distribution to the uniform #distribution S={s(i)=l/K, i=l, ..., K) in the 
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minimum discrimination sense. That is to say, Tunstall parsing solves minM,NZr(i)logzr(i)/s(i) for S 
uniform. Since S is a constant with respect to the minimization, this is exactly maximum entropy parsing. 
More generally, Stubley and Blake consider the minimum discrimination parsing problem in which S is a 
given distribution, not necessarily uniform, to be imposed on the leaves of the parse tree, and the goal is 
for the probability distribution induced by the parse tree to be as close as possible to a desired code 
symbol distribution S. They do not have an algorithm to find the optimal parse tree for the problem in its 
full generality. 

Tunstall’s algorithm is a top down splitting algorithm in which a node of greatest probability is 
replaced by two descendant nodes at each stage. The weights of the descendants are the weight of the 
parent multiplied by the probability of the associated branch. Tunstall’s algorithm is exactly isomorphic 
to Varn’s algorithm for exhaustive unequal costs code trees for the uniform source distribution under the 
mapping rO=tC(’), r1=tC(]) as pointed out by Savari [I@]. Both algorithms maximize the entropy of the 
induced distribution. 

Petry and Schalkwijk [233-2341 identify a generalized Fibonacci structure in binary Tunstall parse 
trees and exploit it in the implementation process. Actually their parsing problem was formulated 
independently of Tunstall but can be identified as equivalent. 

A recent paper by Fabris, Sgarro and Pauletti [235] addresses some characterization results for 
Tunstall codes, such as the relationship between source probabilities and the resulting minimum and 
maximum parse string lengths, motivated by applications to adaptive Tunstall parsing. 

Nonexhaustive parse trees are not usually of interest, because every possible string of source 
symbols must be encoded, however Algra 12361 describes a particular nonoptimal nonexhaustive parse 
tree variant of Tunstall parsing which incorporates special escape strings pointing to codewords for 
selected unlikely source strings. Strictly speaking Algra’s algorithm is not a variable-length-to-fixed 
algorithm but rather a special type of variable-to-variable-length coding algorithm in which the variable 
length parse strings are represented by either single code symbols or pairs of code symbols in a particular 
highly structured way well suited to implementation. However, in general, the compression performance 
can be improved by using dual tree codes of less restricted form as described in a later section. 

Lempel, Even, and Cohn [237] examine a parsing problem for the special case that the binary source 
symbols are equally probable and thus the induced distribution R is dyadic. One can imagine a 
generalization of Lempel, Even, and Cohn’s problem in which ro and rl are not necessarily equal to %, 
and Tunstall parsing would be a special case of this generalization. The particular parsing problem of 
Lempel et al. is to solve min~,~Cr(i)log2s(i)/i)log2r(i) where R is the dyadic distribution induced by the 
parse tree and S is a given distribution imposed on the leaves of the tree. This is in a sense a minimum 
distance parsing problem for a notion of distance different from discrimination. Lempel et al. provide an 
algorithm to find the optimal parse tree for their problem which is an iterative algorithm which converges 
to the optimal tree, and, in each stage of the algorithm, a Huffman-type merge is performed. In their 
original problem statement, Lempel et al. associate costs with the individual code symbols and minimize 
the ratio of average code symbol cost to parse string length. 

Jelinek and Schneider [238] address a parse problem in which the performance criterion is to 
minimize the average value of a constant c raised to the parse string length. But, because the average is 
taken with respect to the distribution induced by the parse tree in which r(i)=roM(l)rlN(l), it is immediate 
that the Tunstall splitting algorithm applies to this problem as well, just by replacing the source 
probabilities ro and rl with cro and crl respectively. 

In the case that Tunstall’s splitting algorithm is applied to “probabilities” ro and rl where ro+rl<l, 
the resulting tree also minimizes Cr(i), a quantity identically equal to 1 for all parse trees when ro+rl=l 
[239]. 
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Parse problems have been much less extensively studied than code problems. It may be that 
interesting parse problem variants are amenable to analysis. 

111.2. Dualities Between Parse Trees and Unequal Costs Code Trees 

The isomorphism between binary Tunstall parse trees and binary Varn code trees is a special case of 
a more general duality between parse trees and unequal costs code trees [240]. In particular, the general 
parse problem of Stubley and Blake can be formulated as finding the tree to solve 
minRD(R,S)=minRZr(i)log2r(i)/s(i) where R is the distributiosn induced by the tree and S is a given 
distribution imposed on the leaves of the tree. With this perspective on parse problems in mind, we can 
reformulate the minimum average codeword cost problem of Karp as finding the tree to solve 
minaD(P,Q) where Q is the distribution induced by the code tree under the mapping q(0)=tc(o’, q( l)=tc(’l’ 
and P is a given distribution imposed on the leaves of the tree, the source distribution. Specifically 
Q={qi=(t ) (t ) =t , i=1, ..., K). Note that minQ(P,Q) is equivalent to minM&p(i)(M(i)+N(i)) 
because the entropy of P is a constant with respect to the minimization. The same algorithm does not 
solve both the Stubley and Blake problem and the Karp problem due to the asymmetry of D with respect 
to its arguments. 

A similar duality can he established between Karp coding and generalized Lempel, Even, Cohn 
parsing [237] in which Huffman coding and the original, dyadic, parsing problem of Lempel et al. are 
dual to each other. 

c(0) M(i) c(1) N(i) I(i) 

111.3. Dual Tree Coding 

In variable-to-variable-length binary coding, or dual tree. coding, a parse tree with K leaf nodes is 
matched to a code tree with K leaf nodes to optimize some performance criterion. Ideally it would be of 
interest to minimize the ratio of average codeword length, or more generally average codeword cost, to 
average parse string length, however, that problem has not been tractable, and a number of authors have 
examined the alternative performance criterion of minR,$(R,Q) where R is the distribution induced by 
the parse tree and Q is the distribution induced by the code tiree [241-2431. In both of these equal costs 
dual tree coding problems the code tree will be the Huffman tree for the distribution induced by the parse 
tree so the problem reduces to finding the optimal parse tree. In general, minimum discrimination dual 
tree coding is not equivalent to minimizing the ratio of average codeword length to average parse string 
length, but for dyadic R they are the same dual tree codes. Unfortunately minimum discrimination dual 
tree coding is also intractable for arbitrary source distribution#s, although good approximate solutions are 
known. 

111.4. Parse Trees and Random Number Generation 

Given a parse tree and an associated source distribution, a distribution is induced at the leaves of the 
tree. Label each leaf with one of NIK variables. Associate the sum of the induced probabilities at the 
leaves which have a common label with that variable. Thus ai random variablewhose distribution is the 
source distribution can be used to generate random variables according to the labeled leaf distribution by 
parsing a string of source symbols according to the labeled ]parse tree. A problem originated by Knuth 
and Yao [244] and discussed in [24] is to start with the (distribution of the random variable to be 
generated and the source distribution and construct the parse tree which minimizes the expected number 
of source symbols used to generate the random variable. An olptimal parse tree for an equiprobable binary 
source can be found from the coefficients of the expansions base ?h of the desired probabilities. The 
generalization to arbitrary discrete sources appears in [245]. Of course there is also a substantial 
literature on random number generation based on a variety of techniques other than parse trees. 
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IV. Representing and Counting Code and Parse Trees 

It may be desirable to represent the code or parse tree itself as a string of symbols in an 
unambiguously recoverable fashion. Of course the efficiency of such a representation is of interest, both 
in the sense of the compactness of the representation as well as in the sense of the computational effort 
required to recover the tree from the representation. One can always represent the tree by the 
probabilities from which it was generated, assuming that the algorithm from which the tree was 
generated, together with tie-breaking conventions, is known. Even if the tree is not a Huffman tree, it can 
be represented in this way by the dyadic probabilities corresponding to the tree path lengths. However, 
because this tends to be a computationally intensive approach, one of the other, general, tree 
representation techniques may be useful for code and parse tree representation. These techniques do not 
exploit any distributional information on the set of all potential code trees, nor is such distributional 
information typically available. Some of the tree representation literature is focused on structures which 
enable fast encoding or, more typically, decoding. There is a larger literature on implementation issues, 
particularly for Huffman codes, which is not included here. 

Surveys of tree representation techniques are given by Katajainen and Makinen [246-2471. They 
categorize the various techniques as permutation-based, rotation-based, and enumeration-based. 
Permutation-based methods involve a traversal of the tree identifying interior and leaf nodes 
distinctively. Rotation-based methods describe a series of transformations to take a canonical tree into 
the given tree. Enumeration-based methods describe a technique for generating all trees in a fixed order, 
and denote the given tree by its index in the list of trees so generated. Labels can be separated from tree 
shapes and encoded separately. 

The structure function idea described by Karp [ 1691 resembles the permutation-based approaches 
outlined in [246-2471 and can be used as a tree representation method. 

The canonical code tree of Schwartz and Kallick E2481 is essentially a rotation-based method which 
has appeared in various forms, sometimes independently, in the code tree literature [249-2531. In an 
interesting recent paper, Parker and Ram E2541 construct a lattice of binary trees based on a partial order 
which describes relative balance. Edges in the lattice correspond to the exchange of a pair of sibling 
leaves at one point in the tree for a pair elsewhere, a rotation-type operation. The Huffman algorithm can 
be recovered as the soluti G to an optimization problem in this lattice-theoretic framework. It may also be 
that lattice concepts will pmvide new insights into other optimal coding problems. 

A series of papers on counting the number of distinct code trees [55, 140, 255-2621 yields 
expressions useful in the evaluation of the efficiency of tree representation techniques relative to 
enumeration based techniques. This is a subset of a much larger literature on counting the number of 
discrete structures of various types. 

Bobrow and Hakimi [2631 and Fitingof and Waksman 12641 have described methods for 
representing code and parse trees as graphs by identifying common subtrees with each other. Graph 
representations may not be as useful as string representations in transmitting or storing code trees. Trees 
with common subtree structures may lead to string representations which can themselves be further 
compressed. 

One can also consider the possibility of representing a tree, as a special case of a graph or digraph, 
by means of its adjacency matrix, and then treating that matrix of 0’s and 1’s as a bit map for 
compression purposes, e.g. [18, Sect. 3.51. 

V. Concluding Remarks 

There are many interesting variants of coding and parsing problems for which further investigation 
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may be worthwhile, both from an algorithmic perspective as well as from the perspective of performance 
evaluation and tree characterization. It is hoped that this survey is a useful guide to the existing literature. 
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