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Abstract 

Most recent research in instruction-level paral- 
lelism has focused on general-purpose applications 
such as the SPEC benchmarks. Many quantitative 
experiments have been pe@ormed over the years 
measuring the impact of different execution models 
and optimization techniques on these applications. 
Recently, however, researchers have been developing 
various ILP architectures for media processors in 
order to exploit parallelism in audio, video, and 
graphics applications. It has been assumed that 
these applications contain far more potential 
parallelism than general-purpose code, but there have 
been .few attempts to quantify the available 
parallelism. In this paper, we present a linear 
complexity global scheduling algorithm that can 
process vety long traces up to 1 billion operations. 
Therefore, traces of video applications such as 
MPEGI, MPEG2, MPEG4 and H.263 encoders and  
decoders can be analyzed. Using an  idealized 
execution model, speedups of over 1000 have been 
found in some applications. The experiment shows 
that eliminating currently identifiable bottlenecks can 
allow the exploitation of huge amounts of ILP in 
audio and  video applications. 

1) Introduction 

Digital video is rapidly becoming a mainstream 
medium for representing information. Real time 
video signal processing requires extensive computa- 
tional power and the evolving nature of video 
applications has encouraged the development of 
programmable processors for video and other real- 
time information media. In  order to provide high 
performance for these applications, a number of 
instruction-level parallel programmable architectures 

have been proposed including VLIW architectures 
[9,10], vector architectures [ll],  and SIMD 
extensions to superscalar implementations of 
sequential architectures [4]. The amount of 
concurrency within instructions varies greatly among 
various proposed architectures. Numerous studies 
have appeared in the literature measuring both 
practical and impractical bounds on available 
instruction-level parallelism for general-purpose 
integer programs and for scientific code, but to date 
there have been no similar analyses for multimedia 
applications. This paper describes experiments that 
measure the available parallelism for several digital 
videos and one digital audio application. 

Oracle experiments [Nicolau] have been used on 
numerous. occasions to study the bounds of 
instruction-level parallelism available in various 
types of applications. In many cases, these 
experiments have developed a poor reputation due to 
the tendency to misinterpret the significance of the 
results. An oracle experiment can never derive an 
actual upper bound on the parallelism available in a 
particular application. The capabilities of an oracle 
experiment are much more limited. What such an 
experiment does do is to construct a model of an 
application whereby one or more potential perform- 
ance bottlenecks are identified. The experiment then 
asks the question “if the performance penalties due to 
these bottlenecks were completely eliminated, how 
much performance could be achieved?” From this 
result, we can derive the maximum average 
parallelism under the conditions described. The 
experiment always includes limitations that restrict 
the maximum performance, such as limits on the 
amount of work that can be performed by one 
operation in one cycle. The experiment also only 
considers the impact of relieving specific known 
bottlenecks, for example inability to perfectly predict 
branches or finite memory bandwidth. It is important 
to recognize that there may exist other hardware or 
software optimizations, some as simple as better 
common sub-expression elimination, that can 
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improve performance beyond the level detectable in 
these experiments. This explains why different 
researchers have achieved different results studying 
the same application set. They have made different 
assumptions about the oracle execution model and 
generally applied different levels of software 
optimization. 

The primary benefit of an oracle experiment is 
in guiding further research. If we can identify a set 
of known bottlenecks and show via an oracle 
experiment that relieving those bottlenecks 
significantly improves performance, then we can 
focus research efforts into hardware and software 
mechanisms to deal with these known issues. If 
relieving the known bottlenecks does not provide a 
meaningful increase in performance, and then 
research must focus on identification of new 
bottlenecks, in particular those that must be solved 
prior to code generation. 

Our research uses trace-driven simulation on 
instruction streams generated by real applications and 
an efficient scheduling algorithm, capable of 
searching the entire instruction stream for independ- 
ent operations. The algorithm can generate the 
optimal critical path length of the detailed depend- 
ency graph (DDG) of the trace with linear 
complexity. Video applications including MPEG- 1, 
MPEG-2, MPEG-4, and H.263 encoders and 
decoders are tested. Section 2 describes previous 
experiments in available parallelism. Section 3 gives 
a description of the experiment and the scheduling 
algorithm. Section 4 presents the results found in the 
experiments and some analysis. Finally section 5 
concludes this study. 

2) Previous Work 

Numerous studies have been done to measure 
the available parallelism in scientific and general- 
purpose programs. Nicolau performed one of the first 
oracle experiments to measure available ILP for a 
VLIW architecture [3].  Trace streams of up to 
50,000 operations were measured and an average 
speedup of around 90 was observed. Smith used 
trace-driven simulations to measure the effective 
limits of multiple instruction issue in superscalar 
architectures and observed an instruction issue rate of 
about two instructions per cycle [ 11. Wall also tested 
ILP limit with various assumptions using a wide 
variety of hardware and software techniques 
including branch prediction, register renaming, and 

alias analysis, and concluded that average parallelism 
rarely exceeds 7 [ a ] .  

Audio and video applications use different 
enough algorithms from either general-purpose or 
scientific code that they justify a fresh look at 
available parallelism. Moreover, these applications 
involve orders of magnitude more calculations than 
many of the previously studied benchmarks. 
Depending on the actual algorithms used an MPEG2 
encoder will require from a few hundred million to 
several billion RISC-equivalent operations per frame. 
Since these applications are intended for continuous 
operation, we must analyze a sample time period, but 
it is critical that this sample period reflects the entire 
algorithm. Most real multimedia applications require 
multiple computational phases and include deeply 
nested multi-level loops. Course-grained parallelism 
often exists between operations that would have been 
millions of cycles apart in a sequential implementa- 
tion. This can be exploited within an ILP framework, 
but will be missed if the analysis samples are too 
small. 

Earlier studies [6] have shown that parallelism is 
seriously constrained by control flow and memory 
address ambiguity. Most of the control flows and 
memory access patterns of video applications are 
statically deterministic; thus a great deal of 
parallelism exists within these applications, although 
it may be difficult to extract. An oracle experiment 
using extremely large traces (up to io9 operations) 
exposes potential parallelism at the basic block, loop, 
and/or procedural levels. 

The limitations of local scheduling can be seen 
in recent attempts to study ILP video signal 
processors. Wolfe, et al. hand-scheduled some VSP 
kernels from an MPEG-2 encoder on a 33-issue 
VLIW architecture [8]. Speedups ranged from 2 . 5 ~ -  
3 0 . 3 ~  depending on the kernel and the pipeline 
configuration. This would at first seem to apply that 
there are sequential phases in the application that 
limit overall speedup, but this ignores the potential 
for inter-procedural parallelism. Global analysis of 
the applications is required to better understand the 
available concurrency. 
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3) Methodology Benchmark Applications 

Machine Architecture 
The field of video processing is evolving rap- 

idly, and there are no commonly accepted 
benchmarks for video applications. However, several 

We have assumed that the execution model is a video standards are being developed to meet a wide 
VLIW architecture assisted by a very powerful range of video processing requirements including 
compiler with some 100% accurate prediction HDTV, video conferencing, and DVD. We have used 
capabilities. An equivalent superscalar architecture public-domain prototype implementations of these 
with an infinite instruction window would provide standards as our benchmark set. Table 3.1 gives a 
identical results. brief description on the benchmark programs. 

We use the MIPS-I11 instruction set in the ex- 
periments for several important reasons. The MIPS is 
a typical RISC architecture that has been widely used 
in previous ILP. Second, the MIPS machines are 
equipped with an excellent optimizing compiler; in 
our experiment, we use the highest degree of 
optimization provided by cc. Third, the trace 
generation tool pixie is available for the IRIX 
operating system; it is a standard tool for trace 
analysis. Finally, public source codes for various 
video encoders and decoders are widely available on 
SGI platforms. 

Trace Driven Simulation 

We use trace driven simulation to evaluate the 
benchmark programs as shown in figure 3.1. Given a 
test program, we first compile and optimize it with 
the SGI C compiler and generate object code, for 
example prog. We then annotate it with pixie to add 
profiling and trace generation code to the binary 
program and generate the executable annotated code 
prog.pixie. Running the annotated binary file 
generates an execution trace. Additionally, we use 
the SGI disassembly tool dis on the binary program 
prog to reconstruct assembly code prog.asm. Our 
simulator parsrc uses the trace and the assembly 
code as input to schedule the trace to find the critical 
path in the dependency graph (DG) of the trace. 

Instead of storing the trace in a file, we run the 
annotated program concurrently with the simulator. 
The trace is generated dynamically and redirected 
into the simulator via a pipe. Since the pipe can only 
be accessed sequentially, the trace information can 
only be processed in a one-pass manner. This restricts 
the scheduler to access the trace stream in order, but 
it saves considerable storage resources when 
processing traces on the order of lo9 operations. 

binary code of bench mark program 
prog (statically linked) 

critical path length 

Figure 3.1 Flow chart of simulation 

MPEG, which stands for Moving Picture Ex- 
perts Group, is the name of a family of international 
standards for coding audio-visual information in a 
digital compressed format. The MPEG family of 
standards includes MPEG- 1, MPEG-2 and upcoming 
MPEG-4, formally known as ISO/IEC-l1172, 
ISO/IEC- 138 18 and ISO/IEC- 14496. The first 
standard developed by the group, MPEG-1, was the 
coding of the combined audio-visual signal at bit 
rates around 1.5 Mb/s. This was motivated by the 
prospect of storing video signals on a compact disc 
with a quality comparable to VHS cassettes. MPEG-2 
is an extension to MPEG-1 supporting higher quality 
pictures at higher bit-rates and multiple-channel 
audio targeting a wide variety of applications 
including digital TV. MPEG-4, motivated by 
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, 

1. Infinite hardware 
VLNV 

2. Perfect register 
renaming 

3. Perfect memory 
renaming 
4. Perfect disambiguation 
5.  Perfect branch 
prediction 
6. One cycle execution 

7. MIPS instruction set 

8. Code transformation 

Table 3.1 Benchmark programs 

The machine is a basic VLIW architecture with 
infinite number of functional units including many 
LoadStore units that can access the same memory 
space concurrently. 
There is enough physical register for register 
renaming thus all register anti-dependency can be 
resolved. 
There is enough memory space for memory 
renaming to eliminate memory anti-dependency . 
All memory address ambiguity can be resolved. 
All conditional branch can be perfectly predicted. 

Each functional unit can execute an instruction per 
cycle; the result can be used by the instruction 
issued in the next cycle. 
The machine executes MIPS R4000 instructions; 
each instruction takes 2 operands at most and 
generates one result. 
The scheduler can perform code transformations 
such as constant propagation and tree height 
reduction as long as correct execution result is 
guaranteed. 

Resource 
assumptions 

Oracle 

Parametric 
assumptions 

Table 3.2 Oracle Experiment Assumptions 

multimedia communication at various bit rates, is still 
under construction and the application domain is still 
not clearly defined. ITU H.263 Recommendation 
specifies a coded representation that can be used for 
compressing the moving picture component of audio- 
visual services at low bit rates. H.263 is defined to 
support videophone application, it is less flexible 
than MPEG and H.261 standard, but therefore 
requires much less overhead. Wavelet algorithms 

process data at different scales or resolutions and 
provide a new approach to image and video 
processing. We  use a typical Daubechies wavelet 
basis to study the parallelism in the discrete wavelet 
transform. 

The source codes for MPEG-1, MPEG-2, and 
H.263 encoders and decoders are available in public 
domain at http:llwww.mpeg.org and 
htt~://www.nta.no/brukere/DVe/h263 software. The 
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MPEG-4 source code comes from the European 
ACTS project MoMuSys. These codes implement 
test verification models for the proposed standards 
and are widely used for studying the standards. W e  
use those public source codes in our study. 

Oracle Experiment Assumptions 

To estimate a empirical upper bound on ILP, 
Nicolau used the Oracle Experiment assuming an all- 
knowing oracle is present to guide the scheduling 
mechanism, telling us which way every conditional 
jump will go and resolving all ambiguous memory 
references [ 31. He also observed that parallelism 
found by the oracle is roughly equivalent to the 
execution of an idealized data flow machine 
assuming infinite resources, no synchronization cost, 
and no ambiguity. 

We use a similar set of assumptions in our ex- 
periment. Table 3.2 lists the assumptions we used in 
the experimental machine model and scheduling 
algorithm. 

Assumptions 6-8 are parametric assumptions 
we make to clearly formulate our problem and define 
the simulation machine model. Note that the 
resource and oracle assumptions are not realistic. 
Resource assumptions 1-3 assume the machine has 
infinite hardware resources including functional 
units, registers, and memory. Oracle assumptions 4 
and 5 assume perfect branch prediction and memory 
disambiguation. It is impossible to construct such a 
machine with infinite hardware resource and the 
control flow, and memory access patterns of some 
programs are unpredictable. However, in practice the 
resources that can be incorporated into a processor 
are growing at a rapid rate and the memory access 
patterns of most of the kernel video algorithms are 
statically deterministic. Given these facts, this oracle 
experiment can isolate some hardware and software 
bottlenecks that can be effectively addressed in the 
near future. 

Simulator 

As shown in Figure 3.2, the simulator consists of 
three major modules: the parser, the dependency 
analyzer and the scheduler. The program image, 
register scoreboard, memory scoreboard, and 
scheduling record are the primary data structures use 
by the simulator. 

dependency 

m'h I - 
Scheduling 

U I record J 

s 

s 
program 

execution 
trace 

Figure 3.2 Simulator diagram 

The parser accepts the assembly program as its 
input and generates a program image for later use. 
The dependency analysis module takes one 
instruction at a time from the program execution 
stream and finds the instructions it depends on using 
the scoreboards. The register scoreboard keeps a 
record of the latest instruction that writes each 
register. Similarly, the memory scoreboard keeps a 
record of the latest instruction that writes each 
memory location. Since the memory space is large, 
we use a hash table to organize the memory 
scoreboard. The scheduling record is a large array. 
Each array element corresponds to an instruction in 
the trace and contains the scheduled issue time of that 
instruction. Since the trace might be very long, it 
consumes a lot of memory space to store the 
scheduling record. That is why we can only simulate 
trace up to io9 operations. 

The simulator is described in algorithm 3.1. 

The parser reads in the assembly program and 
generates a program image in the memory. 
Clears the register scoreboard and memory 
scoreboard. 
Reads in an instruction address from the trace and 
look up the instruction in the program image. From the 
program image and trace, we can get the operand 
register indexes, the result register index, and the 
memory address if the instruction accesses memory. 
Look up the scoreboards according to the indexes or 
memory address and get the instructions it depends on. 
The scheduler accepts the dependency information and 
generates issue time of the instruction and the issue 
time is stored in the scheduling record. 
Update the scoreboards. 
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I 

7) If not end of trace, go to step 3. 
Algorithm 3.1 The simulator 

Optimization Methods 

In order to expose more parallelism, we allow 
code transformation and optimization under 
assumption 8 in table 3.2. Since high-level program 
information is not available to the optimizer, we can 
only use the dependency information generated by 
the dependency analysis module. We use two simple 
optimization methods to reduce the critical path 
length - constant propagation and tree height 
reduction. 

Figure 3.3 gives a simple example to illustrate 
the optimizing methods. In figure 3.3.A, the original 
dependency graph is given. There are two long 
dependency chain: i=i+l and s=s+i. 

Constant propagation is used to reduce depend- 
ency chain i=i+l. From a statement sequence like: 
(a=O; b=a+l; c=b+l), we can deduce that (a=O; b=l;  
c=2). This kind of transformation is called constant 
propagation. After the transformation, the dependen- 
cies between consecutive statements are eliminated. 
Figure 3.3.B shows the result of constant propaga- 
tion. Our optimizer can detect arithmetic operations 
with immediate operands such as ADDI, SUBI. If the 
dependent instruction is also a constant assignment 
instruction or an instruction with constant propaga- 
tion, constant propagation can also be applied on that 
instruction. 

Normally, the critical path length of accumulat- 
ing N variables is N. Using tree height reduction, we 
can sum the numbers pairwise in a tree, then the 
critical path length can be reduced to log2N. In Figure 
3.3.C, after performing the tree height reduction the 
critical path length of the whole program is reduced 
to 15. A speed up of 667 is found in this example. 
The scheduler detects the consecutive accumulation 
instruction pattern and performs tree height reduction 
on the detected dependency chain. These simple 
optimization methods can substantially reduce the 
critical path length in the trace. 

After constant 

After tree height reduction 

4) Results and Analysis 

The simulator is implemented on a SGI Power 
Challenge running the IRIX 6.2 64-bit operating 
system. An 8GB virtual memory space is used to 

i4=4 

store the scheduling record thus traces containing up 
to lo9 operations can be simulated. We require a 64- 
bit operating system instead of a 32-bit system since 
32-bit addresses can only access 4GB of virtual 

Figure 3.3 Optimization of dependencies. 
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memory space, therefore constraining the size of the 
traces. 

Table 4.1 shows the simulation result under 
assumption of no branch prediction. The results are 

1 
2 

The complexity of the simulator algorithm is 
linear; thus very large traces can be analyzed within 
reasonable amount of time. To  be exact, analysis of 
each example takes less than one day to finish. 
Dynamic generation of trace streams and one pass 
analysis allows the huge traces to be manipulated 
quickly without large disk files. The simulator 
generates an optimal scheduling under the constraints 

Mpeg2e 541M 26 108090 1 2.17 
Mpeg2d 7.73M 2200409 3.68 

not sensitive to application and total trace length. 
Almost all of the benchmark programs show a 
speedup of around 3. This result again confirms the 
conclusion drawn from previous studies that the ILP 
is constrained by the basic block size without 
effective global scheduling or precise branch 
prediction. The control dependencies have a severe 
impact on the instruction level parallelism. 

3 
4 
5 

shown in table 3.2 and outputs the critical path length 
of the trace. 

Table 4.2 shows the result of simulation with 
perfect branch prediction, but no code transformation 

Mpeg4e 128M 43594859 3.09 
H263e 1224M 47429 1 179 2.71 
H263d 150M 48346008 3.25 

To compare the results of different scheduling 
options, we simulate the benchmark programs in 
three different ways: 
1) Without branch prediction, scheduling takes 

place within basic block boundaries. 
2) With perfect branch prediction, but without post- 

compiler code optimizations. 
3) With perfect branch prediction and with constant 

propagation and tree height reduction optimiz- 
ing techniques. 

6 
7 

technique is applied. With perfect branch prediction 
assumption, the whole trace can be scheduled as a big 
basic block. One or two degrees of magnitude of 
performance enhancement are achieved. 

The result of simulation with perfect branch 
prediction plus code optimization is shown in table 
4.3. The code optimization can reduce some 
dependency chains in the critical path and achieve 
some degree of performance enhancement. We 
should note the optimization techniques applied are 

Mpegle 827M 2699 18859 3.21 
Mpegld 19.2M 7328627 2.75 

I No I Name I Trace length I Critical vath length I Sveeduv 1 

8 
9 

Mpeglau 6.7M 30 17450 2.33 
Wavelet 376M 13260245 1 2.97 

1 
2 
3 
4 

Mpeg2e 541M 4715781 120.2 
Mpeg2d 7.73M 254163 31.9 
Mpeg4e 128M 2562339 52.6 
H263e 1224M 2610554 49 1.7 

5 
6 

1 I 

Table 4.1 Results (without branch prediction) 

H263d 150M 64 18 14 1 24.5 
Muegle 827M 2183754 397.2 

No I Name [ Trace length I Critical path length [ Speedup 

7 
8 

Mpeg 1 d 19.2M 417189 48.4 
Mveglau 6.7M 39 1557 18.0 
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8 
9 

simple methods to reduce the dependency chain of 
loop control variables. We believe that more 
advanced optimization technique may be developed 
to further reduce the critical path therefore achieve 
higher degree of parallelism. 

Mpeglau 6.7M 214124 32.8 
Wavelet 376M 2574863 153.1 

5) Conclusion 

This experiment has found ILP from 32.8 to 
over 1000 in the tested video applications using an 
ambitious machine model. The results are based o n  
the unrealistic assumptions. In reality, we have no 
infinite hardware resource, some instruction can not 
be executed in one cycle, and it is not possible to 
have perfect branch prediction and memory 
disambiguation, however; there are many straight- 
forward hardware and software techniques that can 
increase capabilities in these areas. Although 
removing any of these assumptions will affect the 
parallelism, it is apparent a lot of parallelism exists in 
the video applications and can be extracted using 
known optimizations and scheduling mechanisms. 
Exploiting this parallelism does, however, depend on 
scheduling technology that can globally schedule 
entire applications. Given these results, it is clear 
that multimedia applications can benefit from ILP 
architectures that support a far greater number of 
concurrent operations than would be sensible for 
other application domains. 
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