
Available Parallelism in Video Applications

Heng Liao, Andrew Wolfe
Princeton University

Abstract

Most recent research in instruction-level paral-
lelism has focused on general-purpose applications
such as the SPEC benchmarks. Many quantitative
experiments have been pe@ormed over the years
measuring the impact of different execution models
and optimization techniques on these applications.
Recently, however, researchers have been developing
various ILP architectures for media processors in
order to exploit parallelism in audio, video, and
graphics applications. It has been assumed that
these applications contain far more potential
parallelism than general-purpose code, but there have
been .few attempts to quantify the available
parallelism. In this paper, we present a linear
complexity global scheduling algorithm that can
process vety long traces up to 1 billion operations.
Therefore, traces of video applications such as
MPEGI, MPEG2, MPEG4 and H.263 encoders and
decoders can be analyzed. Using an idealized
execution model, speedups of over 1000 have been
found in some applications. The experiment shows
that eliminating currently identifiable bottlenecks can
allow the exploitation of huge amounts of ILP in
audio and video applications.

1) Introduction

Digital video is rapidly becoming a mainstream
medium for representing information. Real time
video signal processing requires extensive computa-
tional power and the evolving nature of video
applications has encouraged the development of
programmable processors for video and other real-
time information media. In order to provide high
performance for these applications, a number of
instruction-level parallel programmable architectures

have been proposed including VLIW architectures
[9,10], vector architectures [ll], and SIMD
extensions to superscalar implementations of
sequential architectures [4]. The amount of
concurrency within instructions varies greatly among
various proposed architectures. Numerous studies
have appeared in the literature measuring both
practical and impractical bounds on available
instruction-level parallelism for general-purpose
integer programs and for scientific code, but to date
there have been no similar analyses for multimedia
applications. This paper describes experiments that
measure the available parallelism for several digital
videos and one digital audio application.

Oracle experiments [Nicolau] have been used on
numerous. occasions to study the bounds of
instruction-level parallelism available in various
types of applications. In many cases, these
experiments have developed a poor reputation due to
the tendency to misinterpret the significance of the
results. An oracle experiment can never derive an
actual upper bound on the parallelism available in a
particular application. The capabilities of an oracle
experiment are much more limited. What such an
experiment does do is to construct a model of an
application whereby one or more potential perform-
ance bottlenecks are identified. The experiment then
asks the question “if the performance penalties due to
these bottlenecks were completely eliminated, how
much performance could be achieved?” From this
result, we can derive the maximum average
parallelism under the conditions described. The
experiment always includes limitations that restrict
the maximum performance, such as limits on the
amount of work that can be performed by one
operation in one cycle. The experiment also only
considers the impact of relieving specific known
bottlenecks, for example inability to perfectly predict
branches or finite memory bandwidth. It is important
to recognize that there may exist other hardware or
software optimizations, some as simple as better
common sub-expression elimination, that can

1072-4451/97 $10.00 0 1997 IEEE
321

improve performance beyond the level detectable in
these experiments. This explains why different
researchers have achieved different results studying
the same application set. They have made different
assumptions about the oracle execution model and
generally applied different levels of software
optimization.

The primary benefit of an oracle experiment is
in guiding further research. If we can identify a set
of known bottlenecks and show via an oracle
experiment that relieving those bottlenecks
significantly improves performance, then we can
focus research efforts into hardware and software
mechanisms to deal with these known issues. If
relieving the known bottlenecks does not provide a
meaningful increase in performance, and then
research must focus on identification of new
bottlenecks, in particular those that must be solved
prior to code generation.

Our research uses trace-driven simulation on
instruction streams generated by real applications and
an efficient scheduling algorithm, capable of
searching the entire instruction stream for independ-
ent operations. The algorithm can generate the
optimal critical path length of the detailed depend-
ency graph (DDG) of the trace with linear
complexity. Video applications including MPEG- 1,
MPEG-2, MPEG-4, and H.263 encoders and
decoders are tested. Section 2 describes previous
experiments in available parallelism. Section 3 gives
a description of the experiment and the scheduling
algorithm. Section 4 presents the results found in the
experiments and some analysis. Finally section 5
concludes this study.

2) Previous Work

Numerous studies have been done to measure
the available parallelism in scientific and general-
purpose programs. Nicolau performed one of the first
oracle experiments to measure available ILP for a
VLIW architecture [3]. Trace streams of up to
50,000 operations were measured and an average
speedup of around 90 was observed. Smith used
trace-driven simulations to measure the effective
limits of multiple instruction issue in superscalar
architectures and observed an instruction issue rate of
about two instructions per cycle [11. Wall also tested
ILP limit with various assumptions using a wide
variety of hardware and software techniques
including branch prediction, register renaming, and

alias analysis, and concluded that average parallelism
rarely exceeds 7 [a] .

Audio and video applications use different
enough algorithms from either general-purpose or
scientific code that they justify a fresh look at
available parallelism. Moreover, these applications
involve orders of magnitude more calculations than
many of the previously studied benchmarks.
Depending on the actual algorithms used an MPEG2
encoder will require from a few hundred million to
several billion RISC-equivalent operations per frame.
Since these applications are intended for continuous
operation, we must analyze a sample time period, but
it is critical that this sample period reflects the entire
algorithm. Most real multimedia applications require
multiple computational phases and include deeply
nested multi-level loops. Course-grained parallelism
often exists between operations that would have been
millions of cycles apart in a sequential implementa-
tion. This can be exploited within an ILP framework,
but will be missed if the analysis samples are too
small.

Earlier studies [6] have shown that parallelism is
seriously constrained by control flow and memory
address ambiguity. Most of the control flows and
memory access patterns of video applications are
statically deterministic; thus a great deal of
parallelism exists within these applications, although
it may be difficult to extract. An oracle experiment
using extremely large traces (up to io9 operations)
exposes potential parallelism at the basic block, loop,
and/or procedural levels.

The limitations of local scheduling can be seen
in recent attempts to study ILP video signal
processors. Wolfe, et al. hand-scheduled some VSP
kernels from an MPEG-2 encoder on a 33-issue
VLIW architecture [8]. Speedups ranged from 2 . 5 ~ -
3 0 . 3 ~ depending on the kernel and the pipeline
configuration. This would at first seem to apply that
there are sequential phases in the application that
limit overall speedup, but this ignores the potential
for inter-procedural parallelism. Global analysis of
the applications is required to better understand the
available concurrency.

322

3) Methodology Benchmark Applications

Machine Architecture
The field of video processing is evolving rap-

idly, and there are no commonly accepted
benchmarks for video applications. However, several

We have assumed that the execution model is a video standards are being developed to meet a wide
VLIW architecture assisted by a very powerful range of video processing requirements including
compiler with some 100% accurate prediction HDTV, video conferencing, and DVD. We have used
capabilities. An equivalent superscalar architecture public-domain prototype implementations of these
with an infinite instruction window would provide standards as our benchmark set. Table 3.1 gives a
identical results. brief description on the benchmark programs.

We use the MIPS-I11 instruction set in the ex-
periments for several important reasons. The MIPS is
a typical RISC architecture that has been widely used
in previous ILP. Second, the MIPS machines are
equipped with an excellent optimizing compiler; in
our experiment, we use the highest degree of
optimization provided by cc. Third, the trace
generation tool pixie is available for the IRIX
operating system; it is a standard tool for trace
analysis. Finally, public source codes for various
video encoders and decoders are widely available on
SGI platforms.

Trace Driven Simulation

We use trace driven simulation to evaluate the
benchmark programs as shown in figure 3.1. Given a
test program, we first compile and optimize it with
the SGI C compiler and generate object code, for
example prog. We then annotate it with pixie to add
profiling and trace generation code to the binary
program and generate the executable annotated code
prog.pixie. Running the annotated binary file
generates an execution trace. Additionally, we use
the SGI disassembly tool dis on the binary program
prog to reconstruct assembly code prog.asm. Our
simulator parsrc uses the trace and the assembly
code as input to schedule the trace to find the critical
path in the dependency graph (DG) of the trace.

Instead of storing the trace in a file, we run the
annotated program concurrently with the simulator.
The trace is generated dynamically and redirected
into the simulator via a pipe. Since the pipe can only
be accessed sequentially, the trace information can
only be processed in a one-pass manner. This restricts
the scheduler to access the trace stream in order, but
it saves considerable storage resources when
processing traces on the order of lo9 operations.

binary code of bench mark program
prog (statically linked)

critical path length

Figure 3.1 Flow chart of simulation

MPEG, which stands for Moving Picture Ex-
perts Group, is the name of a family of international
standards for coding audio-visual information in a
digital compressed format. The MPEG family of
standards includes MPEG- 1, MPEG-2 and upcoming
MPEG-4, formally known as ISO/IEC-l1172,
ISO/IEC- 138 18 and ISO/IEC- 14496. The first
standard developed by the group, MPEG-1, was the
coding of the combined audio-visual signal at bit
rates around 1.5 Mb/s. This was motivated by the
prospect of storing video signals on a compact disc
with a quality comparable to VHS cassettes. MPEG-2
is an extension to MPEG-1 supporting higher quality
pictures at higher bit-rates and multiple-channel
audio targeting a wide variety of applications
including digital TV. MPEG-4, motivated by

323

,

1. Infinite hardware
VLNV

2. Perfect register
renaming

3. Perfect memory
renaming
4. Perfect disambiguation
5. Perfect branch
prediction
6. One cycle execution

7. MIPS instruction set

8. Code transformation

Table 3.1 Benchmark programs

The machine is a basic VLIW architecture with
infinite number of functional units including many
LoadStore units that can access the same memory
space concurrently.
There is enough physical register for register
renaming thus all register anti-dependency can be
resolved.
There is enough memory space for memory
renaming to eliminate memory anti-dependency .
All memory address ambiguity can be resolved.
All conditional branch can be perfectly predicted.

Each functional unit can execute an instruction per
cycle; the result can be used by the instruction
issued in the next cycle.
The machine executes MIPS R4000 instructions;
each instruction takes 2 operands at most and
generates one result.
The scheduler can perform code transformations
such as constant propagation and tree height
reduction as long as correct execution result is
guaranteed.

Resource
assumptions

Oracle

Parametric
assumptions

Table 3.2 Oracle Experiment Assumptions

multimedia communication at various bit rates, is still
under construction and the application domain is still
not clearly defined. ITU H.263 Recommendation
specifies a coded representation that can be used for
compressing the moving picture component of audio-
visual services at low bit rates. H.263 is defined to
support videophone application, it is less flexible
than MPEG and H.261 standard, but therefore
requires much less overhead. Wavelet algorithms

process data at different scales or resolutions and
provide a new approach to image and video
processing. We use a typical Daubechies wavelet
basis to study the parallelism in the discrete wavelet
transform.

The source codes for MPEG-1, MPEG-2, and
H.263 encoders and decoders are available in public
domain at http:llwww.mpeg.org and
htt~://www.nta.no/brukere/DVe/h263 software. The

324

http:llwww.mpeg.org

MPEG-4 source code comes from the European
ACTS project MoMuSys. These codes implement
test verification models for the proposed standards
and are widely used for studying the standards. W e
use those public source codes in our study.

Oracle Experiment Assumptions

To estimate a empirical upper bound on ILP,
Nicolau used the Oracle Experiment assuming an all-
knowing oracle is present to guide the scheduling
mechanism, telling us which way every conditional
jump will go and resolving all ambiguous memory
references [31. He also observed that parallelism
found by the oracle is roughly equivalent to the
execution of an idealized data flow machine
assuming infinite resources, no synchronization cost,
and no ambiguity.

We use a similar set of assumptions in our ex-
periment. Table 3.2 lists the assumptions we used in
the experimental machine model and scheduling
algorithm.

Assumptions 6-8 are parametric assumptions
we make to clearly formulate our problem and define
the simulation machine model. Note that the
resource and oracle assumptions are not realistic.
Resource assumptions 1-3 assume the machine has
infinite hardware resources including functional
units, registers, and memory. Oracle assumptions 4
and 5 assume perfect branch prediction and memory
disambiguation. It is impossible to construct such a
machine with infinite hardware resource and the
control flow, and memory access patterns of some
programs are unpredictable. However, in practice the
resources that can be incorporated into a processor
are growing at a rapid rate and the memory access
patterns of most of the kernel video algorithms are
statically deterministic. Given these facts, this oracle
experiment can isolate some hardware and software
bottlenecks that can be effectively addressed in the
near future.

Simulator

As shown in Figure 3.2, the simulator consists of
three major modules: the parser, the dependency
analyzer and the scheduler. The program image,
register scoreboard, memory scoreboard, and
scheduling record are the primary data structures use
by the simulator.

dependency

m'h I -
Scheduling

U I record J

s

s
program

execution
trace

Figure 3.2 Simulator diagram

The parser accepts the assembly program as its
input and generates a program image for later use.
The dependency analysis module takes one
instruction at a time from the program execution
stream and finds the instructions it depends on using
the scoreboards. The register scoreboard keeps a
record of the latest instruction that writes each
register. Similarly, the memory scoreboard keeps a
record of the latest instruction that writes each
memory location. Since the memory space is large,
we use a hash table to organize the memory
scoreboard. The scheduling record is a large array.
Each array element corresponds to an instruction in
the trace and contains the scheduled issue time of that
instruction. Since the trace might be very long, it
consumes a lot of memory space to store the
scheduling record. That is why we can only simulate
trace up to io9 operations.

The simulator is described in algorithm 3.1.

The parser reads in the assembly program and
generates a program image in the memory.
Clears the register scoreboard and memory
scoreboard.
Reads in an instruction address from the trace and
look up the instruction in the program image. From the
program image and trace, we can get the operand
register indexes, the result register index, and the
memory address if the instruction accesses memory.
Look up the scoreboards according to the indexes or
memory address and get the instructions it depends on.
The scheduler accepts the dependency information and
generates issue time of the instruction and the issue
time is stored in the scheduling record.
Update the scoreboards.

325

I

7) If not end of trace, go to step 3.
Algorithm 3.1 The simulator

Optimization Methods

In order to expose more parallelism, we allow
code transformation and optimization under
assumption 8 in table 3.2. Since high-level program
information is not available to the optimizer, we can
only use the dependency information generated by
the dependency analysis module. We use two simple
optimization methods to reduce the critical path
length - constant propagation and tree height
reduction.

Figure 3.3 gives a simple example to illustrate
the optimizing methods. In figure 3.3.A, the original
dependency graph is given. There are two long
dependency chain: i=i+l and s=s+i.

Constant propagation is used to reduce depend-
ency chain i=i+l. From a statement sequence like:
(a=O; b=a+l; c=b+l), we can deduce that (a=O; b=l;
c=2). This kind of transformation is called constant
propagation. After the transformation, the dependen-
cies between consecutive statements are eliminated.
Figure 3.3.B shows the result of constant propaga-
tion. Our optimizer can detect arithmetic operations
with immediate operands such as ADDI, SUBI. If the
dependent instruction is also a constant assignment
instruction or an instruction with constant propaga-
tion, constant propagation can also be applied on that
instruction.

Normally, the critical path length of accumulat-
ing N variables is N. Using tree height reduction, we
can sum the numbers pairwise in a tree, then the
critical path length can be reduced to log2N. In Figure
3.3.C, after performing the tree height reduction the
critical path length of the whole program is reduced
to 15. A speed up of 667 is found in this example.
The scheduler detects the consecutive accumulation
instruction pattern and performs tree height reduction
on the detected dependency chain. These simple
optimization methods can substantially reduce the
critical path length in the trace.

After constant

After tree height reduction

4) Results and Analysis

The simulator is implemented on a SGI Power
Challenge running the IRIX 6.2 64-bit operating
system. An 8GB virtual memory space is used to

i4=4

store the scheduling record thus traces containing up
to lo9 operations can be simulated. We require a 64-
bit operating system instead of a 32-bit system since
32-bit addresses can only access 4GB of virtual

Figure 3.3 Optimization of dependencies.

326

memory space, therefore constraining the size of the
traces.

Table 4.1 shows the simulation result under
assumption of no branch prediction. The results are

1
2

The complexity of the simulator algorithm is
linear; thus very large traces can be analyzed within
reasonable amount of time. To be exact, analysis of
each example takes less than one day to finish.
Dynamic generation of trace streams and one pass
analysis allows the huge traces to be manipulated
quickly without large disk files. The simulator
generates an optimal scheduling under the constraints

Mpeg2e 541M 26 108090 1 2.17
Mpeg2d 7.73M 2200409 3.68

not sensitive to application and total trace length.
Almost all of the benchmark programs show a
speedup of around 3. This result again confirms the
conclusion drawn from previous studies that the ILP
is constrained by the basic block size without
effective global scheduling or precise branch
prediction. The control dependencies have a severe
impact on the instruction level parallelism.

3
4
5

shown in table 3.2 and outputs the critical path length
of the trace.

Table 4.2 shows the result of simulation with
perfect branch prediction, but no code transformation

Mpeg4e 128M 43594859 3.09
H263e 1224M 47429 1 179 2.71
H263d 150M 48346008 3.25

To compare the results of different scheduling
options, we simulate the benchmark programs in
three different ways:
1) Without branch prediction, scheduling takes

place within basic block boundaries.
2) With perfect branch prediction, but without post-

compiler code optimizations.
3) With perfect branch prediction and with constant

propagation and tree height reduction optimiz-
ing techniques.

6
7

technique is applied. With perfect branch prediction
assumption, the whole trace can be scheduled as a big
basic block. One or two degrees of magnitude of
performance enhancement are achieved.

The result of simulation with perfect branch
prediction plus code optimization is shown in table
4.3. The code optimization can reduce some
dependency chains in the critical path and achieve
some degree of performance enhancement. We
should note the optimization techniques applied are

Mpegle 827M 2699 18859 3.21
Mpegld 19.2M 7328627 2.75

I No I Name I Trace length I Critical vath length I Sveeduv 1

8
9

Mpeglau 6.7M 30 17450 2.33
Wavelet 376M 13260245 1 2.97

1
2
3
4

Mpeg2e 541M 4715781 120.2
Mpeg2d 7.73M 254163 31.9
Mpeg4e 128M 2562339 52.6
H263e 1224M 2610554 49 1.7

5
6

1 I

Table 4.1 Results (without branch prediction)

H263d 150M 64 18 14 1 24.5
Muegle 827M 2183754 397.2

No I Name [Trace length I Critical path length [Speedup

7
8

Mpeg 1 d 19.2M 417189 48.4
Mveglau 6.7M 39 1557 18.0

327

8
9

simple methods to reduce the dependency chain of
loop control variables. We believe that more
advanced optimization technique may be developed
to further reduce the critical path therefore achieve
higher degree of parallelism.

Mpeglau 6.7M 214124 32.8
Wavelet 376M 2574863 153.1

5) Conclusion

This experiment has found ILP from 32.8 to
over 1000 in the tested video applications using an
ambitious machine model. The results are based o n
the unrealistic assumptions. In reality, we have no
infinite hardware resource, some instruction can not
be executed in one cycle, and it is not possible to
have perfect branch prediction and memory
disambiguation, however; there are many straight-
forward hardware and software techniques that can
increase capabilities in these areas. Although
removing any of these assumptions will affect the
parallelism, it is apparent a lot of parallelism exists in
the video applications and can be extracted using
known optimizations and scheduling mechanisms.
Exploiting this parallelism does, however, depend on
scheduling technology that can globally schedule
entire applications. Given these results, it is clear
that multimedia applications can benefit from ILP
architectures that support a far greater number of
concurrent operations than would be sensible for
other application domains.

Reference

[l] Michael D. Smith, Mike Johnson, and Mark A.
Horowitz, “Limits on Multiple Instruction Issue”, Third
Intemational Symposium on Architectural Support for
Programming Languages and operating Systems, pp. 290-
302, April 1989.

[2] David W. Wall, “Limits of Instruction-Level
Parallelism”, Fourth Intemational Conference on
Architectural Support for Programming Languages and
Operating Systems, pp. 176-188, April 1991.

[3] Alexandru Nicolau, Joseph A. Fisher, “Measuring the
Parallelism Available for Very Long Instruction Word
Architectures”, IEEE Transactions on Computers, Vol. C-
33, No. 11, pp. 968-976, November 1984.

[4] Intel Corp., “Three Vectors of Performance”, also
http://www.mmx.com.

[5] S. Dutta, A. Wolfe, W. Wolf, “Design Issue for a Very-
Long-Instruction-Word VLSI Video Signal Processor,” in
VLSI Signal Processing IX, pp. 95-104, October 1996.

[6] Monica S. Lam, Robert P. Wilson, “Limits of Control
Flow on parallelism”, Proceedings of the 19* Annual
Intemational Symposium on Computer Architecture, pp.
45-57, May 1992.

[7] Norman P. Jouppi and David W. Wall, “Available
Instruction-Level Parallelism for Superscalar and Super-
pipelined machines,” Third Intemational Symposium on
Architectural Support for Programming Languages and
Operating Systems, pp. 272-282, April 1989.

[SI Andrew Wolfe, J. Fritts, S. Dutta, and E. S. T.
Femandes, “Datapath Design for a VLIW Video Signal
Processor”, Proceedings of the Third Intemational
Symposium on High-Performance Computer Architecture,
Feb. 1997, pp24-35.

328

http://www.mmx.com

[9] Gerrit A. Slavenburg, “The Trimedia TM-1 PCI VLIW
Mediaprocessor”, pp. 171 -178, IEEE Hot Chips 8
Symposium on High-Performance Chips, Aug. 1996.

[101 Paul Kalapathy, “Hardware/Software Interactions on
Mpact”, pp. 20-26, IEEE Micro, Vol. 17, No. 2, March-
April 1997.

[1 1 3 L. T. Nguyen, M. Mohamed, H. Park, Y. Pai, R.
Wong, A. Qureshi, P. Psong, F. Valesco, H. D. Truong, C.
Reader, “Multi-media Signal Processor (MSP) Summary”
pp. 217-226, IEEE Hot Chips 8 Symposium on High-
Performance Chips, Aug. 1996.

329

